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CIRCUIT ANALYSIS USING THE
DRIVING-POINT- IMPEDANCE TECHNIQUE

[ntroduction

This report presents a useful electronic circuit analysis and design technique which was de-
veloped at the University of New Mexico by Dr. R. D. Kelly, Professor of Electrical Engineering.
It was written to satisfy the requests made by those Sandia Laboratories personnel who have been
informally introduced to this technique and who have expressed the desire for a document of this
type. It is the opinion of the author that this technique, known as Driving-Point-Impedance (DPI)
Analysis, provides a far greater insight into electronic circuit operation than the more conven-
tional loop, node, or signal flow graph analysis techniques. Once mastered, DPI analysis can be
applied to a wide variety of electronic circuits, and quite frequently solutions to circuit problems
can be written by inspection in a single step. Successful mastery of this technique requires a
thorough knowledge of a few basic circuit theorems and manipulation of a simple set of useful
equations for each active device considered, i.e., bipolar transistors, FET's, and vacuum tubes.
In general, DPI analysis does not require that a circuit be redrawn with the active devices re-
placed by their linear models. Anyone who has taken a course in basic transistor circuit analysis
is aware of the myriad number of equivalent circuits presented in such a course. The standard
approach uses the various hybrid equivalent circuits, i.e., hybrid common emitter, common
collector, and common base models, to obtain the desired circuit solutions. In addition to utiliz-
ing different transistor models in the analysis, it is quite common to make many simplifying as-
sumptions beyond those already made for the active device models. Quite frequently, the end
result ‘of this approach is confusion on the part of the student. It is not uncommon to find circuit
designers applying simplified transfer function equations to circuit designs while ignoring many of
the original assumptions made during the derivation of these equations; naturally, the predicted
circuit response may differ significantly from the actual response. In addition, the use of many
different active device models involves many different parameters, some of which are certain to
be missing from data sheets. The DPI approach simplifies the writing of transfer functions and

requires only a single active device model for all transistor circuits.

Efficient application of DPI analysis to the solution of electronic circuits dictates that the
writing of current and voltage divider equations, along with use of the Superposition Theorem,
become almost automatic processes. Because of its importance, this material will be covered
in the main body of the report, although individuals familiar with these basic concepts may desire
to omit it. In order to keep the mathematics from obscuring the analysis technique, circuit solu-
tions have been limited to dc or the sinusoidal steady state. Those familiar with the application of

the Laplace transform method can use it along with DPI analysis to solve transient circuit problems;



examples are given in Appendix C. Generally, all-resistive-type networks will be analyzed in order

to demonstrate the desired points; however, DPI analysis can be utilized for other types of networks.

Development of Voltage Divider Equations
Figure 1 illustrates a simple two-resistor voltage divider.
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Figure 1. Simple Resistive Voltage Divider

Using Ohm's Law to solve for eo in terms of es, R and R_, we have

= 1 1
Eo 1sR2 s (1

s
i R —— . (2)

+

s R 1 R2
Substituting Equation (2) into (1), we have
R2
e = e

(3)

Equation (3) is referred to as a voltage divider equation. It should be clear that Equation (3) can be

written in a single step once the pattern is recognized.

Likewise, the voltage drop across R, using

1
point A as the positive reference terminal is

Figure 2 shows a generalized voltage divider circuit along with the voltage divider equation
for the voltage drop across resistor Rk'
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Figure 2. A Generalized Voltage Divider

Note especially that any of the Ri shown in Figure 2 may be a combination of other resistors

point is demonstrated in the following example.

This

Example 1

Problem--Derive an expression for e, in terms of e and the resistors shown using the
voltage divider equation (Equation 4).

R

A
) 1

= O
2 +
Ry Ry e,

he

Solution--We observe that this circuit can be reduced to the series combination of three
resistors,
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where Rx is R, in parallel with the series combination of R, and R_, and Ry is the parallel combina-

3 1 2

tion of R4 and RS' Using Equation (4), we have

e = e _F s (5)

R, (R, + R R R
where RX = ﬁs—ﬁ—% and R_ = F{LLT; .
3 ( 1 2) Y 47 s
Substituting for R_ and Ry in Equation (5) yields
( R4R5 )
R +R
e = e 4 5 . (6)
o s ( R3[R1+R2]> (R4R5 )
+ + R
R3+[R1+R2:| R4+R5 6

Equations such ags (6) can become cumbersome if more than a few resistors are contained in
the network, so we introduce a shorthand notation for the parallel combination of two or more resis-

tors. From this point on, Ri in parallel with Rj will be written as Ri “ Rj instead of

R.R,
R—ll—_'_—]ﬁ;— and R = R, [ R2 l Rg Hoeee HRN will be interpreted to mean
1
SRS R R
Rl R2 RS RN

By using this notation for parallel resistors, one can write Equation (8) as

oo (RylI7)

o " %s |(RIRs] * (Fsll (R, * B,y]) + R, (n

Equation (7) has the form of a voltage divider equation and can be written in a single step directly

from the original circuit diagram.
From this point on, all voltage divider equations will be written in the form of Equation (7).
Example 2

Problem--Using the following circuit, derive an expression for e, in a single step. The

expression must be in the form of a voltage divider equation.
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Solution--
(Rio || R11)

Development of Current Divider Equations

Figure 3 illustrates a simple two-resistor current divider.
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Figure 3. Simple Current Divider
Using Ohm's Law to solve for il’ we have
L= &
1 R

and
e = i(R1 [l R2>

RIRZ , we have

Substituting Equation (9) into (8) and replacing R1HR2 by
Rl + R2

i :1<R1||R2)=i_ <R1R2 >=i( R, )
R R, \R, &, R, * R,

1

e, = e <R2 Il [R3+R4]>+R5+<R6 H[R7+R8]>+R1+<R10 I R11>+R9

(8)

(10)



Equation (10) is referred to as a current divider equation. Equation (10) has a form similar
to the voltage divider equation; but note that in the solution for il’ which is the portion of i passing
through Rl’ R2 is used in the divider fraction. Thus, the divider fraction uses the resistor opposite
the one in which the current is to be determined. Figure 4 shows a generalized current divider cir-

cuit along with the equation for the current through resistor Rk.

(r e lRgllllry IRy e lIR )

k i <Rl“R2HR3H...HRk_IHRk_HH...HRN> + Rk

. (11)

Figure 4. A Generalized Current Divider

Any of the Ri shown in Figure 4 can be a combination of other resistors which are connected

between points @ and ‘

Example 3

Problem--Derive an expression for 12 in terms of i and the resistors shown and express the

answer in the form of the current divider equation (Equation 11).

vi2
P‘(zj\/ Ry Ry Rs §R7
1 R6

Solution--We observe that this circuit can be reduced to the parallel combination of three

resistors,

4 452
i 4 R, Ry §R7




where RX is R1 in series with the parallel combination of R2 and R3, and Ry is R4 in parallel with

the series combination of R_. and R6.

5

Using Equation (11), we have

Ry || B
R L }}:{{H — (12)
[XH 7] y

where

Ry = (R, +[R,IIR,]) and R, * (R IR, + R,

Substituting for RX and Ry in Equation (12), we have

(Ry + [By]|R3)) || By

g =1 {(R1+ [Rzllej)HR?} + (R4H [R5+R6]) (13)

Equation (13) can be written in a single step. The intermediate steps are included only to

clarify the reasoning process.

Example 4

Problem--Derive an expression for io in a single step. The expression must be in the form

of a current divider equation.

10

o R
4
§R11

Solution-~ [Rl + RZ]
i (14)

L =i =
o [R1+R2]+R3

10



The following examples will use voltage and current divider equations to obtain the desired
solution. Additional steps will be included in order to demonstrate the reasoning process involved
in obtaining the answer, but it is emphasized that the answer can and should be written in a single
step. A facility for writing the answers in a single step must be gained in order to take full advan-

tage of DPI analysis.

Example 5

Problem--From the circuit below determine e ,asa function of i and the resistors using

current divider equations. Write the answer in a single step.

1
AV
Rio
—:1;"—\
r?\ ]
1
Y
AN
Ry

Solution--Using a current divider equation and Ohm's Law, we obtain the solution

(Rg * [R4HR5])

(5] = i 'R . (15)
o : (R3+[R4“R5]>+ (R6+R7+R8) ! 7
. o j
L7

Note especially that the ground connected to the upper end of the current source has no effect.
The reasoning is as follows. To find e, we must find the current through R7. When the current
through R7 is known, the voltage across R7 is i7R7. Note that the current entering node @ is i.

If this is not obvious, note that the total current i must flow through R, but if it does, it must

9)
enter at node@because that is its only possible path. Knowing the current entering node @

permits us to write the current divider equation to find 17. The i7R7 product yields e Resis-

tors le R2’ R and R10 do not enter into the equation because they have no effect on the current

9
divider of interest.

Quite frequently, multiple current dividers occur in a single circuit., Example 6 demonstrates

how to handle a multiple current divider.

11



Example 6

Problem--Determine e asa function of i and the resistors using current divider equations.

Write the answer in a single step.

Rio
WA
Ry
A
i i
+ §R12
°
€ A
= Ry
Solution--
. Rig (By+ [R4HR5]> 5 06
ey T * R, + [R“ + {(RS + [R4HR5]) I (RG +R, + R8)}] (R3 + [R4HR5]) + (RG + R, + Rg) 7

| S

I
1
1
.
1
I
1
.

To find 17, the portion of i which flows through R7, we must write two current divider fractions.

Parentheses, braces, and brackets are used liberally in order to clarify the equations.

Example 7

Problem--Determine e, as a function of eS and the resistors using voltage divider equations.

Write the solution in a single step.

12



Solution--

. QR3-+R4]”[R54-R6+-R7M R,

0o s R1+R2+([R3+R4]||[R5+R +R.]) + Ry R_+Rg+R

(17)

6 7

N

VaB

First, the fraction of e appearing between nodes @ and ‘ is found; then the portion of this volt-

age (VAB) appearing across R, is determined. This amounts to writing a double voltage divider

7
equation.
Example 8

Problem-~-~Determine e asa function of e and the resistors using voltage divider equations.

Write the solution in a single step.

Solution--

e - e [(R12>II(R3+{R4HR5})ll(R6+R7+R8)J R,
o s [(Rlz)“(R3+{R4HR5})H(R6+R7+R8>}+R2+(RlHRlo) R, + R, + Ry

(18)

AB

13



Superposition Theorem

DPI analysis frequently requires application of the superposition theorem,l This states that
the voltage across, or the current through, any element can be computed in the following way:
Replace all the independent generators except one by their internal impedances and compute the
voltage across (or the current through) the element in question. Repeat this procedure for each
independent generator in turn. Then, find the algebraic sum of all the calculated voltages across
(or the currents through) the element in question; this will be the actual voltage across (or the cur-
rent through) the element. Note especially that the generators that are replaced by their internal
impedances are independent generators. An independent generator is one whose output is independ-
ent of any voltage or current in the circuit connected to the generator. When electronic circuits
containing linear models of the active devices, e.g., bipolar transistors, FET's, etc., are ana-
lyzed, it is common practice to redraw the circuits, replacing the active devices with their
associated linear equivalent circuits. Consider the common emiiter hybrid equivalent circuit of

an NPN transistor (Figure 5).

i

ib h C
: <
— e o COLLECTOR
BASE O3 ,[\ c 5
C + +h V h i h v
\% re ce felb oe ce
be — -
B ”\A To Z Y o
E E (EMITTER)

Figure 5. Hybrid Model of NPN Transistor Connected in Common-Emitter Configuration

This model contains a current-controlled current source and a voltage-controlled voltage

e ce
is controlled by the VCe voltage. Both of these sources are referred to as dependent generators

source. The current source hfeib is controlled by the i current, and the voltage source hr Y

because their outputs are dependent functions of a voltage or current which exists elsewhere in
the circuit. If the superposition theorem is applied to such a circuit, these dependent generators

are not replaced by their internal impedances but are retained throughout the analysis,

Only series parallel type networks will be investigated in the examples given in this section.

Other types of networks which are not easily classified will be discussed in a later section.

Example 9 demonstrates the advantages of using the superposition theorem as opposed to

loop or node analysis.

14



Example 9

Problem-- Determine VA by using loop and node analysis and then by application of the super-

position theorem; prove that the answers are the same by letting R1 = R2 = R3 =10, and e1 = e2 =1V.

1 A 2

MV

JAAN © 4
o D (e O
L

R \% R
i

Loop Analysis--Assume loop currents il and 12 flow as indicated. Using Kirchhoff's voltage

law (KVL), we sum the voltages around each loop.

It
[]

. i
11(R1 +R3) LRy =e (19)
. i + -
11<R3) 12(R2 R3) e, (20)
Equations (19) and (20) can be solved simultaneously for il and iz; then V. is found to be

s
Va (11 12)R3

Node Analysis--Using Kirchhoff's current law (KCL) to sum the currents entering node @,
we have

15



Superposition--Using superposition, we can write the answer in a single step by inspection.

v o=e [Ralfel N, f [RajRs] (1)
+
A 1 [R3“R2] R1 2 [R1“R31+R2
W

This part found by This part found by

setting eg to zero setting e1 to zero

and using the voltage and using the voltage

divider equation. divider equation.

Substituting the given values for resistance and voltage into the equations will prove the

answers are the same, i.e., V, = 2/3 V.

A

The next example demonstrates the application of the superposition theorem to a circuit con-

taining mixed sources.

Example 10

Problem--Determine current 13 by application of the superposition theorem.

R Rq
ANV < AV
_._>
+ R '3 +
e1_<> I % > m QO e,
y i i
I
\IJ
L

Solution--This circuit contains three independent generators; therefore, the contribution
made to 13 by each generator can be found and the sum of these individual currents will yield the

resultant current 13.

Step 1 -- Replace independent generators Il and III by their internal impedances and

determine the portion and direction of i_ due to e1 acting alone.

3

R R

3 ___913 (due to el>
AVN— % MV
]

16



e

. _ 1

iy (due to el) = (-—-——-—R TR ) (22)
1 3

Note especially that an ideal independent current source is replaced by an infinite

impedance (open circuit) and an ideal independent voltage source is replaced by

zero impedance (short circuit).

Step 2--Replace independent generators I and III by their internal impedances and

determine the portion and direction of i, due to i acting alone.

3

13 (due to 1)

I

By

1‘.3 (due to i) = -i <E—1-:—R—3> (current divider form) (23)

Step 3--Replace independent generators I and II by their internal impedances and

determine the portion and direction of 13 due to e, acting alone.

i (due to ez)

3
—&
AN : AN
Ry Rq
R
[ 2 <>+
e, =0 1 e
2
! 6 1 Ti: o I T-
L
s
~ S 2
iy (due to e2) (R1 T R3 (24)

Step 4--The value of i, is given by the algebraic sum of Equations (22), (23), and (24).

3
i3:<R e+1R>_i(R R+1R)‘ (R e+23> (25)
17 % 17 " 173

17




Example 11 demonstrates how a dependent source can be handled by the superposition

theorem.

Example 11

Problem--Determine e, as a function of the independent sources e, and ey

Solution--

Step 1 --Replace independent generator eq by its internal impedance and determine

the portion of e, due to source e, acting alone.

b

..._> - o

+

°1
- +
R e
c o)
'e}
First, we knowe = - ,Bib Rc because all of the current from the dependent ,Bib

current generator flows through resistor Rc-

Writing the voltage drops around the Rll’ Re’ ey € loop and solving for ib’

we have

e
. 1
1 (duetoe,) =
b( 1) <R11+(1+B)Re)

So

e
1
S (due to el) - (R +(1+ BR )BRC
11 e

(26)

18



Step 2--Replace independent generator e1 by its internal impedance and determine the por-

tion of e, due to e, acting alone.

N o W o

e =
1 g R N
© o
Y o

This circuit is best handled by replacing the Re’ e_ combination by its Norton

2

equivalent circuit,“\ redrawing the circuit, and solving for ib'

A
R J Py
11 TE
AWV
o, = 0 :a ' jtez/Re Re
=

Applying the current divider equation at node E , we have

ez Re
b Pyt \R v RS
e e 11

Solving for ib’

9

i, {due to e ) 5 - ————
b + +
( 2 R, Re(l 8)

Now that the value of ib due to e2 is known, we can substitute it into the expression

for e .
o)

"Refer to Appendix A for a review of Norton's theorem.



1]

eo (due to ez) —Blb (due to ez) Rc

= BR (27)
R11 + Re(l—i—ﬁ) c

Step 3--The value of e, is given by the algebraic sum of Equations (26) and (27).

e = - {=m———————|BR + |s——FF—=v—=]BR (28)
o R11 +(1+B)Re> c Rll + (1+8) Re c

The point to be emphasized in the solution of this circuit by application of the
superposition theorem is that the dependent generator is never modified.

Only the independent generators are replaced by their internal impedances.

Generally, the intermediate steps shown in Examples 9, 10, and 11 are omitted and the

solutions are written in a single step.

Example 12
Problem--Using the superposition theorem, derive expressions for 15 and e1 in a single
step.
R3
—AAN e O
| e
R 5o +
4 + e
+ 15# R5 R o
6
®s
ol i _L & o)
Solution--
= i 2
e iRy (29)
N " ST 517l o
+ + \ + s R +R_+R
S [R3 (BsIRe)|) \Rs * Bs 1 [ 5HR6] 3 TRy \Rs
Dual current divider giving Voltage divider giving
portion of ig due to iy source portion of e acting
acting alone 1
alone which appears
across R5, causing
a current through R5
+
. [R5 ][(Rg * &y 7t (30)
+ +
Sy [R5“ (RS R4>J R, R,
N W J

Voltage divider giving
portion of e acting
s
2
alone which appears

across RS’ causing

a current through R5



Driving-Point- Impedance (DP 1) Equations

If the driving-point-impedance at each terminal of a bipolar transistor, FET, or vacuum tube
(triode or pentode) operating in its linear region is known, the application of the aforementioned
techniques will yield solutions to many electronic circuits in a single step. The analysis can be
extended to the entire range of operafion by utilizing break-point techniques. The expressions for
the DPI seen at each terminal of a bipolar transistor, J-FET and (triode or pentode) vacuum tube
will now be derived. For the sake of brevity, little will be said about the circuit models except
that the implied assumptions made in using these models have proved to be sufficiently accurate for

most engineering calculations where internal device capacitances can be ignored.

Bipolar Transistor DPI Equations

The circuit shown in Figure 6 (A), along with the simplified hybrid model of the transistor in
the common-emitter configuration (Figure 6B)2, will be used to derive expressions for the DPI

seen looking into each terminal of the bipolar transistor.

+V
Rcc (BASE) (COLLECTOR)
C Bo c
c f
b b ; by iy

]
!

E (EMITTER)

H-AAN—
o |
=

(A) (B)

Figure 6. Circuii for Determination of Bipolar Transistor DPI Equations

If the simplified hybrid model of the transistor shown in Figure 6 (B) is compared with the
complete hybrid model of Figure 5, it can be seen that the hoe and hre parameters have been
omitted. In practice these parameters are usually not specified on data sheets. Their inclusion
in the hybrid model unduly complicates the circuit analysis and provides no benefits to speak of.

hie is defined as the dynamic base-to-emitter resistance, and h, is defined as the dynamic small

fe

signal forward current gain. hfe is usually referred to as the beta (B) of the transistor. All of

the small signal parameters are defined at the quiescent operating point chosen for the device.

Base-to-emitter impedance at Forward current gain at
Sv quiescent operating point Si quiescent operating point
- be (ohms) b o=_C (dimensionless)
ie oi fe  di
b v = Constant b | v = Constant
ce ce

21



hie and Bare the only two parameters that will be used in the analysis of transistor circuits using
the DPI technique, as opposed to the more conventional approach of using common-emitter,
common-collector, and common-base hybrid parameters. Although hie can be measured on a

3
curve tracer, a useful formula for determining hie at room temperature is given by Equation (31).

-3
+
. 26><IOI (1 + B) (31)
ie EQ
where IEQ is the quiescent emitter current expressed in amperes,
First, the DPI seen looking into the base terminal of the transistor will be found. The DPI
seen by the e signal source (Figure 6A) is RB in series with the base DPI of transistor Ql'
Recognizing this fact permits us to move over to the base and drive it with an external generator,
and then find the base DPI by solving for the current flowing from the external generator. This
e
scheme is shown in the circuit of Figure 7 where base DPI = T}i .
b4
Re
BASE-~
EMITTER RE
LOOP
(4) L (B)
Figure 7. Base DPI of Bipolar Transistor
Using Kirchhoff's voltage law (KVL) around the base-emitter loop (Figure 7B), we have
i b *i Ry + i Rp-e = 0. (32)
eX
Observing ib = iX and solving for base DPI = . produces
X
eX
-— = b DPI=h, + (1+ 33
i ase ie ( ‘B)RE (33)

Equation (33) can be interpreted as meaning that any impedance (RE)in the emitter lead of a bipolar

transistor, when measured at the base terminal, will be increased by the factor (1 + ).

22



The DPI seen looking into the emitter terminal of the bipolar transistor can be determined by

driving the emitter with an external voltage source and solving for the generator current. The cir-

cuit is shown in Figure 8.

/\
BASE-EMITTER
LOOP

(A) (B)

Figure 8. Emitter DPI of Bipolar Transistor

Using Kirchhoff's current law (KCL) at the emitter node and writing the KVL equation around

e
the base-emitter loop will yield emitter DPI = % .

c o s *
i 1b(1 B) (34)
and
+ i+ =
(hie RB)lb e 0
eX
i, = —— (35)
+
b hie RB
So
ex hie * RB
- i = 2 3
iX emitter DPI ) (36)

Equation (36) indicates that any impedance (RB) connected to the base, as seen at the emitter, is

diminished by the (1+p) factor.

The same procedure can be used to determine the collector DPI. From the simplified
hybrid circuit model of the transistor (Figure 6B), it should be evident that the collector DPI
is infinite since an external voltage source connected to the collector cannot excite a base

current; therefore, the output from the Bib generator will be zero.

collector DPI = (37)

23



Equations (33), (36), and (37) are fundamental to DPI analysis of bipolar transistor circuits.

Summarizing, we have

Base DPI = h, + (1+B8)R (33)
ie E
hie + RB
Emitter DPI = RN (386)
Collector DPI = « (37)

The key to effectively applying these equations is to remember that the impedances RB and
REare the impedances seen by the base and emitter of the bipolar transistor respectively. RB
and RE quite frequently are combinations of other circuit elements including transistors, FET's,
etc. In addition to the DPI Equations, the basic relations between the base, emitter and collector
currents of a bipolar transistor are indispensible to the analysis. These important relations are

given below.

i =i

c b (38)

i, = (1) (39)

i, = (ﬂ%) ie (40)

Before DPI analysis is applied to an actual circuit, the DPI equation for a triode or pentode
vacuum tube and J-FET will be derived. Note that these techniques are also applicable to the

derivation of the DPI equations of other active devices.

Triode /Pentode Vacuum Tube DPI Equations

Figure 9 illustrates the circuit to be used for the determination of the vacuum tube DPI

equations.

P
-
p
G y r
+ uegk =
& L
A gk—4
= R
7K
(A) = (B)

Figure 9. Circuit for the Determination of Vacuum Tube DPI Equations



r_ is the dynamic plate resistance and i is the forward voltage amplification factor. Both of these

parameters are defined at the quiescent operating point chosen for the tube.

® Yok (ohms)
rp Y
p ng = Constant
u = Aavpk (dimensionless)
ngk ip = Constant

Inspection of the equivalent circuit of Figure 9(B) shows that the grid DPI is infinite (no grid current

flows).

grid DPI = w (41)

Before the other equations are derived, an expression for the signal plate current will be
found. This equation will be used frequently in the application of DPI analysis. Writing the KVL
equation around the plate-cathode circuit (Figure 9B), we have
iprp+ip RL+ipRK-p«e =0 . (42)
but
e, =e, - ipR . (43)

Subétituting Equation (43) into (42) gives

ir +i R, +i R, -ue. +mi R. =0
pp poL p KM THGRE

me,
i = (44)
o) RL + rp + (1+;L)RK

To determine the plate DPI, we apply an external voltage source to the plate and find the

current flow from this source as shown in Figure 10.

G
+
E\egk —

(A) (B)

Figure 10. Determination of Plate DPI



Writing the KVL equation around the plate-cathode circuit, we have

- + i - = . 4
R i Ry-e 0 (45)
But
gk T K (48)
®x
Substituting Equation (46) into (45) and solving for plate DPI = T we have
X
ir - u(-i R)+i R..=¢e .
X p x K x K X
°x
-~ = plate DPI = r +(1+®WR (47)
lx P K

lsquation (47) indicates that any impcedance (R") connected to the cathode, as scen at the plate,
Sy thipedanee N
is incrceascd by the (1+u) factor.

The cathode DPI is found in a similar manner using the circuit of Figure 11.

RL
(B)
Tigure 11. Determination of Cathode DPI
Writing the KVL equation around the plate-cathode circuit, we have
+ +i R~ =0 . 48
Megk lﬂcr; YL ¢ (48)
But
e = -e . (49)
gk X
®x
Substituting Equation (49) into (48) and solving for the cathode DPIL = T we have
X



-pue +i (r + R.)-e =0
X X p

e I’p + RL
X _ |l p "L

1 = cathode DPI ( T E ) (50)
%

Equation (50) indicates that any impedance (RL) connected to the plate, as seen at the cathode,

is diminished by the (1+pu) factor,

In summary, we have

pe;
i = (44)
+
P RL + rp (1+M)RK
Grid DPI = = (41)

Plate DPI = (rp + [1+#]RK) (47)

r R
- p+ L
Cathode DPI (——-——————1 —m ) (50)

Here, as in the case of the bipolar transistors, the important point to remember is that the RL and
RK impedances can be other circuits containing active devices, i.e., transistors, vacuum tubes,

etc.

J-FET DPI Equations

The circuit shown in Figure 12 will be used to derive the DPI equations for a J-FET (junction

field-effect transistor). The operating region is defined such that no gate current flows.

+Vpop D
ATE
G\ Ry, J‘\ ] .
g v
G D <—— DRAIN G m gs ds D
+ S <— SOURCE . =
e, + Kgy S
l_ R e
S i RS
(A) (B)

Figure 12. Circuit for Determination of J-FET DPI Equations

The FET equivalent circuit of Figure 12(B) can be made to assume the same form as the triode
vacuum tube equivalent circuit of Figure 9(B) by the application of Thevenin's Theorem as shown in

Figure 13.

)

“Refer to Appendix A for a review of Thevenin's Theorem.

[t
-1



<
r 1
ds d
— RD
(g _r.) =
+ m-ds’ £s
G v HF
+ + 89
e RS

Figure 13. Thevenin Equivalent of FET Equivalent Circuit

Now if we define a voltage amplification factor u for the FET such that

- 51
g s (51)

then the DPI equations for the FET take on exactly the same form as the triode vacuum tube

equations and the same remarks apply. The FET DPI equations follow:

i= ( ol ) (52)
T ,
d RD + e (1+liF)RS
Gate DPI = o (53)
r + R
Source DPI = ~E—S—————£ (54)
(1+MF)
i = + (1+
Drain DPI T s (1 ;LF)RS (55)

ds
the voltage amplification factor, and g is the transconductance of the FET. These parameters

r is the dynamic drain-to-source resistance and corresponds to rp of the vacuum tube. 'U“F is

are defined in the same manner as they are for the triode vacuum tube, i.e.,

Vs (ohms)
Yas T 31 (56)
d v = Constant
gs
_3v ‘ .
ds (dimensionless) =
MF = 57 (57)
gs id = Constant ™
g _ ai’d (mhos) (58)
m avgs V4g = Constant

These parameters are all defined at the quiescent operating point.



In most cases, ryg can be assumed to be infinite, This greatly simplifies the DPI equations
for the FET. The effect of letting rys 8° to infinity can be seen by substituting the expression for

m

- (Equation 51) into Equations (52), (54), and (55) and taking the limit as Iy 80€S to infinity.

lim iy : lim 8ntas & - / i
r — 00 r o OO R_+r + (1+g r ) R R R
ds ds D “ds mds’ T8 rD PR f + Bg
gm ds gm gm ds
e
_ i
14 Ry
Em
L € (52-A)
d 1 R, IDEAL FET
——+ 5
grn
R
+R ~ e
lim I _ lm Yas D - Hm ___r_‘_js_
s Source LT 1+gmrd Tig™ @ 1 + 8
r
ds
=1
-
Source DPI = L (54-4A)
g IDEAL FET
lim . Hm
= + (1+ =
. _,wDPIDrain 1" —- (rdS (1 gmrds) RS) )
ds ds
] . (65-4)
Drain DPI IDEAL FET
A summary of the ideal FET equations follows:
%
i = (52-4) IDEAL
a I, Rg FET
g DPI
EQUATIONS
Gate DPI = » (53)
1
Source DPL =+/—— (54-4)
gm
Drain DPI = « (55-A)

In the examples that follow, both sets of equations will be used but it should be emphasized

that in most cases, the ideal FET equations are sufficient for most engineering calculations.



Application of DP| Analysis to Some Simple
Transistor Circuits

Series Parallel Networks

All of the basic tools needed to effectively apply DPI analysis to a wide variety of electronic

circuits have been covered. A sampling of how DPI analysis can be utilized on a variety of circuits

will now be presented. Feedback circuits will be covered later. The first circuit to be analyzed

is shown in Figure 14.

DPL _Ji
— = Ve
u T
, +
i -

R, i

+ >
e

Figure 14. Single Stage Transistor Amplifier

Assume that the DPI looking in at the input and both output ports, and also the voltage gains,
are required. The input DPI is the capacitive reactance of CC in series with the parallel combina-
tion of Rl’ R2 and the base DPI of Ql' The complete expression for the DPIin seen by the signal

source is given in Equation (59), which was written in a single step by inspection.

)

NERW |
DPL_ = <J—w—c—c) +l(R.1“R2) I (hie + [1+3 R

Base DPI

The DPI at the eo terminal is RC since the collector DPI = «,
1

DPIle =R (60)
o [¢]
1
The DPI at the e  terminal is Re in parallel with the emitter DPL
o

2

/ b, + (R, (R.) ll{(—=— + R,
DPI e02 = (Re) H 3 ie 1“ (?Jrlg)(chp 1)% (61)

Emitter DPI
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If only mid-band frequencies are considered, the capacit(ieve reactaélce terms in Equations (59) and
o o,

and - will be written by inspection.

i i

(61) can be dropped. The mid-band signal voltage gains

+VCC is always assumed to be at signal ground.

i ] [ (Rl “R2> 8
e = - i
+ + M+ R R_iR,) + [h, + [1+8] R roic (62)
O1 Ri {(Rl “R2> “ (hie rﬁ] e)} ( 1“ 2) ( ie [ B] e) | I |
N PRIt Jo 1
| N Pl |
| Current :'Li flowing from signal Current divider to find [ |
| source e, portion of i; flowing to : 1 I
i base of Ql { | |
. 4 |
) N | !
| ip |
|
; Base current of Ql | l
L /
I hd |
! . [
: Collector current of Q1 :
[ J
hvd
eO = -i RC
1 c
Signal output voltage at terminal eO
1
e, (R “R )
i 1 2
e = (1+8), R (63)
+ JIR R . + 1+8] R R R\ + (b, + [1+8] R | ! b e
% (Rt (Bl | (P T e)}] [( LR * e * BEI R e
. J Q ) | |
I Current i, flowing from signal Current divider to find | |
|  source eil portion of ii flowing to | : |
! base of Ql | |
I | |
| l | |
— J
v l l
| i :
I b |
| Base current of Ql | |
« - I
| hva
f i |
| e
| Emitter current of Ql |
. J
Vo
€. ° ieRe
2
Signal output voltage at terminal e,

2
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Equations (62) and (63) are derived as follows. The signal output voltage is determined by the
current flowing through the load impedance (RC or Re for e, ore, ). Both the emitter and collec-

tor signal currents depend upon the signal base current, but'the sig21'1a1 base current is determined by

the total current flowing from the signal source ei; therefore, to find either the emitter or collector
signal current, the first step is to find the total signal current ii that flows from the e, signal source.
Once ii is known, a current divider fraction can be written to determine what portion of ii flows into
the base of Ql. With the base current known, the collector or emitter current can be found by
multiplying by B or (1+8) respectively. The last step is, .of course, to multiply by the respective
load impedance, RC or Re. The correct phase must be determined by tracing the currents through
the circuit, e.g., a current into the base of Ql causes a current into the collector of Ql’ which
causes eo1 to decrease with respect to ground; thus, there is a 180° phase reversal as noted in
Equation (62). It should be obvious at this point that it is far more tedious to explain DPI analysis

than it is to apply it.

The dc quiescent conditions existing in the circuit of Figure 14 can also be determined with
DPI analysis. The dc analysis of bipolar transistor circuits requires that the base-emitter dc
offset voltage be taken into consideration. If silicon transistors are being used, the offset voltage
is in the range of 0.6 to 0.7 volt. The dc circuit of the single stage amplifier (Figure 14) is shown

in Figure 15 with the Rl’ R2 bias network replaced by its Thevenin's equivalent circuit.

THEVENIN EQUIVALENT
OF BIAS NETWORK

Figure 15. DC Circuit of Single-Stage Amplifier

Note that the dc offset voltage of the base-emitter junction is treated as if it were a battery

connected in series with the base terminal.

To find the quiescent base current I we write the KVL equation around the base-emitter

BQ’
loop using the fact that we know the base DPI of Ql.

[o%)
[}V



IBQ<Rb{+ h_le+(1+,8)Re” $V_ -V =0

\ \4

BB o
I = (64)
+h, +(1+
BQ R *+h ( B)Re
Recalling that ICQ = BIBQ and IEQ = (1i+ B)IBQ, we have expressions for all of the quiescent

currents; knowing these currents permits us to write the expressions for the quiescent output

voltages as shown in Equations (65) and (66).
E =V _..-1_ R (65)

B =1 R (66)

At this point, a note about biasing the circuit of Figure 14 is in order. Good design practice
demands that the values of EolQ and EoZQ (quiescent values of output voltage) remain relatively
constant for a wide range of p's. In other words, the value of quiescent collector current should
be as independent of 8 as is possible to permit changing the transistor without having to alter

the circuit components. It seems to be common practice to use "'rules of thumb" for biasing
circuits. Unfortunately, it is also quite common to find designers applying these rules to cir-
cuits or under conditions where the original assumptions do not apply. Circuit equations are so

simple to derive utilizing DPI analysis that it is easier to write and analyze the equations of

interest than it is to remember "handy-dandy' formulas.

As an example, let us consider what conditions must be met in order to maintain a constant
ICQ in the circuit of Figure 15. By multiplying the expression for the quiescent base current
(Equation 64) by 8, we have an expression for ICQ'

A% -V
BB [] (67)

+ + (1+
Rb hie (1 B)Re

I = B =

ca - Pleg

Manipulating Equation (67) yields

v -V
: BB o) (68)
cR R, +h, + [(1+8)

b e R

Now, we must examine Equation (68) in order to see how we can force it to be independent

I

of 8. Examining the denominator, we see that two terms are a function of B. It is usually a
- + R . . R
good approximation to assume that M) ~ 1 for high B transistors, i.e., if 8 = 40, then

B

41/40 = 1.025 = 1.0. If we make this assumption, the denominator term containing R is
e
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relatively independent of 8. It is also easy to see that if Re is made much much greater than

R, +h,
b e , Equation (68) will be relatively independent of 8. Furthermore, it is usually valid to

assume that hie/’B is small enough compared to Rb /B that the former can be left out of the expres-

sion. We then have Re >> Rb or BRe > R, for good stability of 1

B

As a further example, consider the circuit shown in Figure 16 and determine the mid-band

b cQ’
voltage gain by writing the solution in a single step. At mid-band frequencies the coupling and
by-pass capacitors can be considered to be signal short circuits. The voltage gain expression is

given in Equation (89).

.1}—0'0“’ +0

Figure 16. Twc-Stage RC Coupled Amplifier

e

e, = [Rs + {(RIHRZ) i (hiel + [1+ﬁ1]Re1)}

Rc1 B3| Ry
R°1 + [(R3”R4) “ (hie2 + [1+B2]Rez)] (R3”R4) + (hiez + [1+ﬁ2]gez)

(m30%) .
By Ry +(hiel * [Hﬁl]Rel) 1

| (R S
—— = pr—

N e e e e e . e ——

/- N [ — UG S R S ——
! Base 1 DPI Base 1 DPIL ! Base 2 DPI ! Base 2 DPI '
1
w — J [—
: ) T\ [ \/ 1[ ¢ N J‘
1 's Current divider fraction : | Current divider fraction \ Current divider fraction \
! Signal source current ! { i
: . o ! !
' 1bl i | |
: . i ] |
. Signal base current i I
— v l '
1 A
1 i !
| 1 i |
’L Signal collector current ﬁ i
i , ‘
| ‘2 I
" Portion of signal coliector current flowing toward QZ base !
—
b ,
| )
' 1b2
[\ Stgnal base current
i
3
Signal collector current
Equation (69) is developed as follows. The signal output voltage e, is produced by i flow-
C
2
ing through RC , but iC is determined by ib . The signal base current ib is a fraction of iC s

2 2 2 2 1



but icl is determined by ibl, which, in turn, is a fraction of the signal source current iS. is is,

of course, determined by e the signal source. When writing the expression for e, asa function
of eS, the first step is to determine the signal source current is. With iS known, ibl can be found
by multiplying is by a current divider fraction to determine the portion of is which flows to the base
of Ql. iC is ﬁib , and 12 can be found by multiplying by another current divider fraction. An addi-

1 1
tional current divider fraction produces the ib signal base current, and iC is given by the ,Sib
2 2 2
product. Finally, e, is found by multiplying by RC .
2

A basic building block of many integrated and discrete circuits is the emitter-coupled differen-

tial amplifier shown in Figure 17.

cec

P +
-I}—-—OIO‘D +0

\CONSTA NT-CURRENT
SOURCE

Figure 17. Basic Emitter-Coupled Differential Amplifier

Using DPI analysis and the superposition theorem, the output voltage as a function of the

two input voltages can be written by inspection. The result is shown in Equation (70).

{ Signal emitter @, current

1 By 9
- — R
o T Ih_ ¥ (1+ B)[hiq <1+Bl> g | e, T |5 F(#AIE (Bz> e,
le, 1 2 2 2 e, 2" | Tieg |
1+)82 t | | 1+ﬁ2 | |
I\ —~ )l | ! .,\ /I : I
! i I ! i !
| 4 b, : : ; b, . {
'L Signal base current » { N Signal bgse current J' |
| iz/ i 1 lc |
1 1 | 2 |
! i
) |

]
| Signal collector @
!
|

| due to e, acting alone’ current due to e
Ik ™ \_acting alone )
c

{ Signal Q2 ccz)llector current Portion of e, due to signale

2

| due to source & acting alone acting alone

“w

Portion of e due to signal €,

acting alone

(70
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To obtain Equation (70} we utilize the superposition theorem. We replace voltage signal
source 62 by its internal impedance (short circuit) and solve for the portion of eo which is caused

by signal source e then, voltage signal source e, is replaced by its internal impedance (short

1

circuit), and the portion of eO which is caused by signal source e2 is found. The sum of these two

terms gives the output voltage e, asa function of the two input signals e, and e, and the circuit
parameters. Setting e, = 0 we find the current flowing from the e, signal source which is the
signal base current of Ql' The signal emitter current of Q1 is found by multiplying ib by (1+ ’Bl)'
All of the signal emitter current of Q. flows into the Q, emitter since the DPI of collector Q3 is
infinite. Collector Q2 signal current is (,82 /(1+ ,32)) times the Q2 signal emitter current. Multiply-
ing the whole expression by collector load R, yields the portion of e, due to e;. Setting

e, = 0 we find the current flowing from the €, signal source which is the signal base current of @
Multiplying the signal base current of Q2 by ,82 produces the signal collector current of Q2, and
multiplying by Rc2 produces the portion of e, due to eg. Checking current directions will show

that e, is connected to the noninverting side of the amplifier while e, is connected to the inverting

side.

The circuit of Figure 18 is an FET source-coupled differential amplifier using FET's in
place of the transistors Ql and Q2 of Figure 17. The voltage gain of this amplifier is given in
Equation (71) without further explanation. The reasoning process is very similar to that used for

deriving the gain of the circuit of Figure 17.

Figure 18. Basic Source-Coupled Differential Amplifier

9
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€ ° r. TR Rp - T. +*R RDZ (1)

If the ideal FET equations are applied to the solution of this circuit, the expression for €,
is given in Equation (71-A). It can be seen that utilization of the ideal FET DPI equations greatly

simplifies the form of the resulting circuit solutions.

°1 2
e =j)——— (R - R (71-A)
o} 1 - 1 D2 1 . 1 D2
gml gm2 gn’12 gml
RD2
= (e1 - e2) 1 1 (71-B)
——-|-__~_.
gml ng

The form of Equation (71-B) clearly demonstrates why this amplifier is called a difference

amplifier,

37



Nonseries Parallel Networks

Thus far, only simple series parallel type networks have been used as examples. Quite
frequently, networks are encountered which can not be so easily classified. Consider the circuit
shown in Figure 19 and observe that neither the voltage divider nor the current divider equation
will permit the answer to be written directly by inspection. Of course, conventional node or loop
analysis techniques will yield the desired answer, but our object is to avoid this approach because
the form of the resultant equations is not as clear and easily interpreted as are voltage or current
divider equations. A - Y transformations will also be avoided because they are not readily per-
formed in a single step, and rarely are they remembered. The object here will be to familiarize

the reader with a technique which can be applied to the solution of circuits containing feedback.

4
N\
R5
AN\, 0
+ Rl RZ +
e, R, Ry e,
_L ]

Figure 19. Simple Nonseries Parallel Circuit

The circuit of Figure 20 is the same as the one shown in Figure 19 except for the addition of

the e, voltage generator to the e, terminal.

R,
AM
w A =
A o<
R R +
+ 1 2 R o +
eS R3 L o eX
o
A

Figure 20. Simple Nonseries Parallel Circuit

An expression for eo can be easily found by using superposition. Solve for the current iXT
by using the superposition theorem; iXT will be composed of two parts:

=(e ,e =0)+i(e =0,e) . (72)
s’ x X 8

i
xT X

The first part of 1 is due to e when e =0, and the second part is due to e when e = 0.
xT s X X s
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Several things should be noted about Equation (72). When es =0, iX due to eX has the form

e

ife ) =
X X (factor)

Dimensional analysis will reveal that the (factor) must be an impedance, and, in fact, the (factor)
turns out to be the output driving-point-impedance seen looking into the output terminals. When

e, = 0, iX due to & is the output short circuit current. Equation (72) can now be rewritten as

e
X
. - s + X
1XT 1osc R (73)
o
where iosc is the output short circuit current, and Ro is the output driving-point-impedance.
Because e, is a ficticious external generator, it can be adjusted to assume any convenient value.
I ex is adjusted so that it assumes the value of eo, this forces the current flowing from the e,
generator to be zero. If this is not obvious, consider the circuit of Figure 21.
i
Ro <=__xT
+ +
eo EX
CIRCUIT UNDER STUDY
Figure 21.
As soon as the eX generator is adjusted so that eX = eo, ixT will be forced to zero and removing
e, will have no effect. Applying the superposition theorem to the circuit of Figure 21 and solving
for le’ we have
e, e,
= —= . _2 74
xT R R (74)
o o
. - £ . - 0.
Setting e, eo orces 1XT 0
Assume now that we have set e, = eo such that iXT = 0. This forces Equation (73) to become
°o
=i + 75
0 1osc DPI (79)
out
Now Equation (75) can be solved for e
e =-1 DPI (76)
o osc out
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where the RO term has been replaced by the more descriptive DPIout term. The method used to
derive Equation (76) should be thoroughly understood because it is the basis for handling feedback
circuits using DPI analysis. This method will now be used to solve the circuit of Figure 20, which

is repeated in Figure 22. The answer will be developed in steps to demonstrate the technique.

Ry
R VWV
5 <1
NV NN xT
+ R Ry + +
e R3 eo e
s RL _X

Figure 22. Simple Nonseries Parallel Circuit

e
by the superposition theorem. Solving for iosc shown in Figure 23, we have

Ry
NN
A =i
+ ; % R 1
e R %
s 3

Figure 23. Solving for Current i
osc

X
S + X
%7 " lose DPIL_
Equation (77).

. e R+ [122“1?3:‘ R, R,

tose © R5+[ 4“{R (R, |’ (r—:1+ [RQHRSD TR, R4+(R1+ [RZHR;J) R, + R, n
\ } J J
Total current i_ from e Portion of i_ flowing Portion of i flowing through R,
source. through R4 and con-

and contributing to i

tributing to i osc’
osc

Now we solve for the other part of i which is eX/DPIO by replacing ey by its internal

xT’ ut’

impedance as shown in Figure 24.
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AN
Ry

v A AMA o1

R R b4

1 2 e +

. R 20

e = 0 3 RL I_ fX

Figure 24. Solving for Current iX(eX)

In order to obtain the solution for the iX current, we apply an external generator to each circuit

element connected to the e, node as shown in Figure 25.

R4
MA
R5 7 W <4— iX
VWA Wt g < iX 3
R1 RZ NS 1X 2
+ 1 + +
§R3 Ry, e Oe,
=0 e X —
e “x, _%g 3
Figure 25. Solving for ix(ex) by Using Multiple External Sources
Once expressions fori_ , i, andi_ have been found by using the superposition theorem, eX s eX
1 2 3 1 2
and e can be set equal to e , and then the sumofi , i , andi will yield i (e ). Using
3 X X0 x, Xq <X
functional notation, the expression for ix(ex) is given by Equation (78).
Io=i (e, )+i (e d+i (e } + i (e V+i (e )+i (e ) + i (ex)+i(e )+ix(e )
ot 2 Yy 3 %1 *1 ¥z 2 %2 ¥z 2 1 ¥ ¥ %3 3 *3
. 7N 7S v g (78)
Currents caused by e, Currents caused by e Currents caused by e
source = i 1 source = i 2 source = { 3
X X2 X3

1

Inspection of Figure 25 will show that many of the terms of Equation (78) are equal to zero, namely,

i (e ), iX(e ), 1 (ex)andi (e ).
¥ % 3 ¥1 F*1 %o *1 %3
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Solving fori_, i, andi_ by superposition to find i, we have
X X,y Xg X

S xy Ry | Ry |
i = ?‘Z +0+0+0+ Rz+{R3“(R1+[R4”R5])} 1- R3+{Rl +(R4“R5)}S R4+R55

=+

eX
3 s S Rs | (79)

0+ R4+(R5“{R1+(R2“R3)}> Lo (Rs ¥R, * B[R |7 By

e

X
DPI_ ~°
o

Now, settinge_ =e_ =e_  =e_and getting Equation (79) in the form i (e ) =
X %, Xg X X X
portion of ixT (Figure 24) caused by the e, source.

we have the

1 1
i =e —1 + +
x X YR

Lo Ry F R (B BBl ) ( Ry (B {Ry + By Ry

Rs } { Rs { Rs }{ B3 }
1- 1-
R3+[R1+(R4“R5)] R4+R5$ {R5+[R1+(R2“R3)] R, + R,

(80)

The expression for the output DPI can be taken from Equation (80) by observing that the terms
within the large braces must each have the dimensions of 1/ohms. Recalling that the total
impedance of many parallel impedances is given by Equation (81), we can see that the DPI out from

Equation (80) is given in Equation (82).

1 1 1

1 1
S ST . S— (81)
Rp Ry Ry 3 Ri1Ra ) Rs

R, + R R (R R, + (R, IR, + (R Ry)
DPT = Re R : gR;“< [1;1{] 5])} I ( “R{ I; }>R (82)

; (R
1 s+ [R +(R lR)] lR5+ [R1+(R2“R3)]s lR3+R2$'

1 -
R

5RS

Using Equation (76), and substituting into it the expressions for DpIout and _iosc from Equations

(77) and (82), we have the complete expression for e asa function of e as shown in Equation (83).
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) e R+ {R2HR3] R, R,

°o ° R5+{R4“{Rl+(R2“R3)}} R, + Ry By * By R4+R.1+[R2“R3] R, + R, :
.

-1 Y

osc
R Ry +{Bg (Rl + Ry llR5])} I By <R5 1R, * Ry Rs)})
L R, R, R, R, (83)
1_(R3+{R1+(R4“R5)] R5+R4 L- R, + [R1+(R2“R3)} R, + R,
~

DPI

O

At this point it is probably not at all evident that the use of DPI analysis to obtain Equation (83)
has any advantage over loop or node analysis. In reality, it would be ridiculous to solve this circuit

(Figure 19) by DPI analysis; the actual value of this approach will not be evident unitl feedback cir-

cuits are investigated.

Application of DP| Analysis to a Feedback Amplifier

The feedback amplifier of Figure 26 will be analyzed using DPI analysis and the technique

presented for handling nonseries parallel circuits.

Zener diode used for biasing

(assume zero signal impedance)

- O
+

i €
-0

Ql is an N-channel FET
Q2 is a bipolar PNP transistor

Figure 26. Amplifier Circuit Containing Feedback

The circuit of Figure 26 is classified as a feedback circuit because a portion of the output
current is fed back to the input in such a way as to modify the conditions existing in the input cir-
cuitry. In this case, the collector current of Q2 modifies the source current of Ql. Assume for
the moment that the output impedance of this amplifier is needed. The inexperienced user of

DPI analysis would look into the output terminal and say that the output DPI is just Rs in parallel
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with the source DPI of the FET Ql' This answer will be shown to be incorrect because the feedback

causes the output impedance to be modified. The DPI equations needed for the analysis of this cir-

cuit are repeated here for convenience.

4 . h

i i ' °
=i =
d + + (1+
s Tys RD ( .UF)RS
< Source DPI = > FET
<1 +/J«F
Drain DPI = r +(1+MF)R
Gate DPI = =
_/
Collector DPI = =
Base DPI = h, + (1 +B)R Bipolar
ie e .
4 Transistor
h R
. _fie+ B
Emitter DPI = ""——1—+B—
J

The amplifier voltage gain eo/ei and output DPIO will be found using the signal circuit shown

in Figure 27.

Figure 27. Signal Circuit of Feedback Amplifier

The external source e, is applied to the output terminal in order to disable feedback and permit

easy analysis of the circuit by conventional DPI methods. The ixT current is a function of & and

e, as indicated in Equation (84).

iXT = f(eX, ei) (84)

By applying the superposition theorem, we know that

=1 (e =0,e)+i (e, e =0) (85)
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P~

and observation will show that

ife. =0, ei) =i (output short circuit current) (86)
osc
®x
i (eX, ei =0) = —Jj—lgi;;’/(output DPI) (87)
So
°x
- - .
xT losc DPIO (88)
If we adjust the ficticious ey generator so that it is equal to e then ixT = 0 and Equation (88)
becomes
o
0 =i +
1osc DPI (89)
o}
Solving for e, we finally get
e = -1 DPI (90)
o osc o
In solving for the current ixT of Equation (85), we obtain both an expression for e, and the output
DPI. PFirst, iosc will be found. The circuit of Figure 27 has been redrawn in Figure 28 to clarify
the procedure.
Q1 has parameters
Ppo Tys
Q2 has parameters
B hie
Figure 28. Solving for iosc in the Feedback Amplifier
H_e, R
. F® > ( D \) ]
i = - 14 fm— |8 (91)
osc <rds + (RDH hie) [ RD + hie/
AN
\_.__———N
Expression for source Portion of i Portion of i
and drain current of Q caused by osc caused by osc
source current Q_ collector
of Ql current

Second, the portion of the ixT current caused by the e, generator will be determined. The circuit

of Figure 27 has been redrawn in Figures 29 and 30 to clarify the procedure.



Figure 29. Solving for the Current iX

Common node as seen in Figure 29

--/

>
. Y
+—ﬁ’
><

Figure 30. Solving for Current iX by Splitting the e Source

ife) =i 41 when e = e = e
X X X X be

The current iX(eX) is more easily determined by splitting the eX generator and using superposition

as shown in Figure 30. The total iX(eX) current is found by setting e, e e, and summing
the individual currents. 1 2
e R R
— X S D
b ey 1 T+ ® ey EFn )Pt O (92)
R ds D“ ie R+ ds ” ie D ie
sl 1+ kg &) 1+pp
e
Observe that we previously determined that ix = DP}; so that we can now write DPIO from inspec-
tion of Equation (92). ©
+ (R . h.
R L ( D” 1e)
N
DPI = (93)
o RS RD

1+

RS * ;rds * (RD”hie)} RD * hie
I
Recall that in the beginning of this problem, the statement was made that the output DPIO was not
the parallel combination of R_ and the DPI of the Ql source. Equation (93) shows that the output

S
DPIO of the amplifier has been reduced due to the feedback, thus confiriming the statement.
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Using Equation (90) we can now write the complete expression for e

e =-i DPI (90)
(6] osceC o]
- {rds + Ry hie)}
T
e, = “‘“+u(¥{ei vl B i EiDh P S“R i R (94)
°©  \fas T VD %ie D" %ie - s ( D \B
+ T T
Rg* (rgs T (Bp| ) Ry +h |
1+p
_ J ¥ Y,
N ~
A -i DPI
osc - [e]

Dividing both sides of Equation (94) by ei yields the desired expression for voltage gain.

If the ideal FET equations (Equations 52A, 53, 54A, 55A) had been used, Equation (94A) would

have resulted. Equation (94A) can be obtained by taking the limit as r , — = of Equation (94). Of

ds
course, it would be easier to use the ideal FET equations in the first place.

1
e, R R “ {—}
JRR (e U0 W PR B T 1 S~ GBm (94A)
o 1 R_+h / R R
| g— D ie 1+ S D B
[m + 1 +
| | \Rs e J\Bp""e/ )
m
| | |
| I f
'\ /|L |
J
Y Y
ose DPL

As pointed out in previous examples, an explanation of the reasoning process behind the
analysis procedure is far more tedious than the procedure itself. A single example is certainly
not sufficient to explain all of the subtleties of applying DPI analysis to the solution of feedback

circuits, but it does make the reader aware of some of the pitfalls, and this was its purpose.

In order to gain a more thorough insight into the application of DPI analysis, the example

problems in Appendix D should be worked and References 6, 7, and 8 should be studied.
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APPENDIX A
REVIEW OF THEVENIN'S AND NORTON'S THEOREMS

Thevenin's Theorem

. 4 . . . .
Thevenin's theorem’™ states that any linear time-invariant oneport network can be replaced by

a single voltage source V, _, in series with an impedance Z,,, and as far as the external terminal

T T
conditions are concerned, the Thevenin equivalent circuit cannot be distinguished from the original

if VT and ZT have been properly chosen. This is shown in Figure Al.

LINEAR ——0 T Q
TIME-INVARIANT * d)VT Z.
NETWORK - 3

THEVENIN EQUIVALENT
CIRCUIT

Figure Al. Application of Thevenin's Theorem

A simple procedure for determining the Thevenin equivalent circuit of a linear time-invariant

oneport network follows:

1. Remove any networks connnected to the oneport.

2. Determine the voltage appearing at the terminals of the oneport by any convenient
analysis or measurement technique. This voltage is referred to as the open-
circuit or Thevenin voltage VT.

3. Replace all independent voltage and current sources by their internal impedances
and determine the impedance seen looking into the terminals of the oneport by
any convenient analysis or measurement technique. This impedance is referred
to as the Thevenin equivalent impedance.

4. Replace the original linear time-invariant oneport with its Thevenin equivalent

circuit.

Example Al

Determine the Thevenin equivalent circuit of the oneport shown within the dotted lines
(Figure A2). Using both the original network and its Thevenin equivalent, determine the voltage

across the load resistor RL and show that both expressions are the same.



Figure A2. Network Under Consideration

The Thevenin voltage VT is found by removing'RL and computing the voltage appearing across

the open circuited terminals as shown in Figure A3.

A
By

AN o)
+ | Rg ﬁ
% Ry Ry T
L

Figure A3. Determination of Thevenin Voltage V

T
R UH(R,+R)) R
VT = e, [ 2 3 4 4 (A1)
{Rzll(R3+R4)}+Rl R, + R,
N ~ A N —
Portion of e, appearing Portion of voltage
across R2 ! across R, which appears
across R

4

Voltage divider fractions were used to write Equation (A1) by inspection. This technique is
explained in the main body of the report. Any other convenient technique can be applied, but this

one is probably the simplest to use.

The Thevenin impedance Z_, is found by removing RL and replacing all independent sources

T
by their internal impedances as shown in Figure A4.

NA— MV
R R

) 1 3
B 7
i

Figure A4. Determination of Thevenin Impedance

19



ZT = {R4“ (RS + [Rl + Rﬂ)} (A2)

The complete Thevenin equivalent circuit with the load RL connected is shown in Figure AS5.

A o<
<

+ eR

i
Ly SRy
}

Figure A5. Thevenin Equivalent Circuit of Oneport Shown in Figure A3

Solving for the voltage °R across RL using the Thevenin equivalent circuit of Figure A5, we
have Equation (A3). LT

R }
e =V |l— (A3)
RLT T |R, + 2,

Substituting the expressions found for VT and ZT (Equations Al and A2) into Equation (A3), we have
Equation (A4).

. .. [ R2“(R3+R4) } R4 ] R } )
RLT i {R2“(33+R4)}+R1 R, +R, RL+{R4“<R3+‘R1“RZD}

Now, using Figure A2, an expression for g will be written directly.
L

o, [ e ] [ ]

After simplification, Equations (A4) and (A5) can be shown to be identical, indicating that

(A5)

the Thevenin equivalent circuit has the same terminal characteristics as the original circuit.
Another way to check and see if Equations (A4) and (A5) produce the same answer is to choose
some convenient values for the circuit components and sources. If all R's are chosen to be
19 and e, = 8 volts, en and eR will be found to be 1 volt.

L LT

Norton's Theorem

o . . - .
Norton's theorem is the dual of Thevenin's theorem, and states that any linear time-

invariant oneport network can be replaced by a single current source i,, in shunt with an impedance

N
ZN’ and as far as the external terminal conditions are concerned, the Norton equivalent circuit

cannot be distinguished from the original oneport if iN and Z._are chosen properly. This is shown in

N
Figure AB.



LINEAR —0 Iy o,
TIME-INVARIENT ; 7
NETWORK I % N

Figure AB6. Application of Norton's Theorem

A simple procedure for determining the Norton equivalent circuit of a linear time-~invariant

oneport follows:

1. Remove any networks connected to the oneport.

2. Short the terminals of the oneport and determine the short-circuit current that
flows by any convenient analysis or measurement technique. This current is
referred to as the Norton current iN.

3. Replace all independent sources by their internal impedances and determine
the impedance seen looking into the terminals of the oneport by any convenient
analysis or measurement technique. This impedance is referred as the Norton
impedance ZN' i

4. Replace the original linear time-invariant oneport with its Norton equivalent

circuit.

Example A2
Using the Thevenin equivalent circuit found in Example Al (Figure A5), determine its Norton

equivalent circuit and then solve for en using the Norton equivalent circuit and show that the

Ly

answer is the same as given by Equation (A4).

The Norton current iN is found by removing RL and computing the current flowing through

the short as shown in Figure AT.

— |,

Figure A7. Determination of Norton Current

iN=

N <
|

(As6)
T

The Norton impedance Z,N is found by removing RL’

(short circuit), and measuring the impedance seen looking into the oneport terminals as shown in

replacing VT by its internal impedance

Figure A8.



||l'—
Q

Figure A8. Determination of Norton
Impedance

1.
P i
N

Figure A9. Norton Equivalent Circuit
of Figure A5

z
e =i [— XN Vg (AT
R N{Z_+ R L
L L
N
S zi-LT—R_—Rsz z—]}r Ao
Ry, T \%77 R TA4r ™Ry

Note that Equation A8 is identical to Equation (A3), indicating that the Norton and Thevenin

equivalent circuits have the same terminal characteristics.

(&1
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APPENDIX B

DETERMINATION OF SIGNAL CURRENT DIRECTIONS IN
ACTIVE DEVICES OPERATING IN THEIR LINEAR REGIONS

This appendix discusses the procedures and reasoning used in determining the directions of
signal current flow in active devices operating in their linear regions. Current flow through a
transistor or vacuum tube is unidirectional, and application of a signal to the control electrode
causes the magnitude of this current flow to increase or decrease. Unfortunately, from a peda-
gogical standpoint, thinking of the signal as causing an increase or decrease in the magnitude but
not a change in direction of the total current flowing through the active device frequently leads to
confusion when one atitempts to determine phase relationships within the circuit. The direction of
quiescent current flow is, of course, dependent upon the device being used, e.g., current flows

from the collector and base to the emitter in an NPN transistor as shown in Figure Bl.

l+1 cq
+1
B
_BQ c
B E
[

Figure Bl. Quiescent Currents of an NPN Transistor
Operating in its Active Region

Current flow into the terminal of a device is treated as a positive current, and current flowing out
of the terminal of a device is treated as a negative current. Although this is the conventional way
of treating current directions, it is not necessary to follow it as long as some consistent procedure

ig utilized.

In a PNP transistor, all of the current directions are exactly opposite to those of the NPN
device. Current flow is from the drain to source in an N-channel FET, and is just the opposite in
a P-channel FET. The current flow in vacuum tubes is always from plate to cathode. These facts

are, of course, well known to anyone familiar with these devices.

Consider the effect of applying a signal current to the base of the NPN transistor shown in
Figure Bl. The signal current will algebraically add to the quiescent base current IBQ in such a
way as to increase or decrease the total base current, thus causing the absolute magnitudes of
the total collector and emitter currents to increase or decrease correspondingly. It is important
to realize that the total base, emitter and collector currents of a transistor are each composed of

two parts. The first part is the quiescent terminal current, and the second part is the current
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caused by the signal. The direction in which the quiescent terminal currents flow is strictly depend-
ent upon the active device being utilized; this is shown in Equations (B1) through (B6) where Equations
(B1), (B2), and (B3) are for an NPN transistor and Equations (B4), (B5), and (B6) are for a PNP

transistor.

| inp | = | Ing | + libs | (B1)

gg\j i | =] Iog NI (B2)
Transistor) | i | = - IEQ | lies [ (B3)
i | =l 1+ 1 | (B

ioNliD - | lor = Ieq |+ lios | ()
Transistor l o | = | . | & Iies | (B6)

The subscripts T, @, and S stand for fotal, quiescent, and signal respectively.

Note especially the ordering of the algebraic signs used on the signal currents for both the
NPN and PNP transistors. Two things should become apparent. First, the polarities of the signal
base and collector currents are always the same but opposite from the emitter signal current.
Second, the signal current polarities are the same for both NPN and PNP transistors, although
the polarities for the quiescent and total currents are reversed. This second observation is
especially important because it means that we can ignore whether a transistor is an NPN or a
PNP device when performing a signal circuit analysis. Note especially that for linear operation
of the transistor to be maintained, it is necessary to keep the absolute magnitude of the signal

currents less than the absolute magnitude of the quiescent currents.

When analyzing a linear circuit containing active devices, the analysis is generally per-
formed in two distinct steps. First, the dc or quiescent circuit is analyzed by replacing all of the
signal sources by their internal impedances. Second, the ac or signal circuit is solved by replac-
ing all of the dc¢ sources by their internal impedances. (The dc sources are usually considered as
signal short circuits.) Errors are most likely to occur when the signal analysis of the circuit is
performed. These errors usually occur because the analyst does not completely separate the dc
from the ac analysis, e.g., when considering the base current caused by a signal, he considers
iBT instead of ibs’ A positive going signal voltage applied to the grid of a vacuum tube or to the
gate of an FET will cause a signal current to flow into the plate or drain terminal and out of the
cathode or source terminal respectively; likewise, a negative going signal voltage applied to the
grid of a vacuum tube or to the gate of an FET will cause a signal current to flow out of the plate
or drain terminal and into the cathode or source terminal respectively. In the case of a triode
vacuum tube, the plate and cathode currents have the same absolute magnitude; the drain and
source currents of an FET also have the same absolute magnitude. These concepts are demon-

strated in Figures B2 through BS6.



Figure B2.
C
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Figure B3.

Figure BA4.

Figure B5.

Quiescent and Signal Currents in the NPN Transistor

L
bs cs

Quiescent and Signal Currents in the PNP Transistor

LID

D
S
I

Q

O

Quiescent and Signal Currents in the N-Channel FET

Quiescent and Signal Currents in the P-Channel FET
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Figure BS6.

Quiescent and Signal Currents in the Triode Vacuum Tube
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APPENDIX C

DPI ANALYSIS USING THE LAPLACE
TRANSFORM METHOD

In this appendix we demonstrate how DPI analysis can be used in conjunction with the Laplace
transform to obtain the transient response of a circuit containing active devices. The assumption
is made that the reader is familiar with the application of the Laplace transform to circuit solutions.

Assumptions made about the circuits to be analyzed are:

1. The simplified models used to derive the DPI equations still hold.
2. The input signal or signals do not drive the active device or devices into

their nonlinear region or regions.

Example C1

Problem-- Determine the response of the single stage amplifier shown in Figure C1 when

ei(t) = u(t) where u(t) is a unit step applied at t = 0.

Figure Cl. Single Stage Transistor Amplifier

Solution--The transformed signal circuit is shown in Figure C2.

1/sC

] -
1

Figure C2. Transformed Amplifier Circuit

Using DPI analysis, the expression for EO(S) can be written in a single step and is shown in

Equation (C1).
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e ) )
E (S)= -. BR
) 1/8C + (RB “ hie) RB + hie c

Now, Equation (C1) will be manipulated into a form which will eventually permit the inverse transform
Eo(8)
to be taken. We are interested in obtaining the forward voltage transfer function H(S) = E(-)( )
i

= H(S) = - BR (C2)
Ei(S) 1+ SC(RB H hie) RB + hie c

Placing Equation (C2) into standard form, we have Equation (C3):

R
H(S) = -[ 5 B BR_ ! (C3)
1 R +h, R h.
l?‘*"{a-R—B—“H'——)-} B ie B“ e
ie
Let { 1 }
% = K
C(RB“hie) 1
and
_ "B fer |1 |,
RB + hie RB“ hie 2
Then K. S
2
H(S) = - STR (C4)
1
We know that EO(S) = H(S)Ei(S) . (C5h)

The Laplace transform of a unit step input voltage applied at t = 0is given in Equation (C6).

1
74 (u(t)) =3 (C8)
Placing the values of H(S) and Ei(S) into Equation (C5) and taking the inverse Laplace transform
gives the output as a function of time.
1
E(S)=_Kzs _=_....Ii2___
o S+ K S S+ K
1 1
- -Kt
e (t) = v ](E (s)) - Ke 1
o} o 2
e () = -Ke i (cn
o 2
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Equation (C7) indicates that the response of the amplifier to a unit voltage step on the input is a
decaying exponential with a time constant K1 and a maximum amplitude K_.
Example C2

Problem--Determine the response of the single stage amplifier shown in Figure C3 when

ei(t) = u{t), where u(t) is a unit step of voltage applied att = 0. Assume linear operation.

5

(t)

e

manadii
10+

Rp =R, || Ry

Figure C3. Circuit for Example C2

Solution~--Using the Laplace transform and DPI analysis, an expression for EO(S) can be

written by inspection.

E _(S) = ) B h
° 1 1 [ 1 ]
R + 5?3_1 + {RB I [hie +(1 + B)(Re I §6—2>]} Rp + |hy, +(1+ ,B)(Re I Scz)
B — e
R .
1 L
_Rc + <.S—C3 + RL)
ﬂ’(u(t)) = é

Substituting Equation (C9) into (C8) we have

R R

1 -1 B ¢

(C8)

(C9)

Eo(S)‘<§> 1 T N PR e e
Ri+§c—l+{RB“ [hie+(1+ﬁ) (Re”@ﬂ} B ‘\16 <e“§ﬂ [c (—S—E—+R
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The algebraic manipulation of Equation (C10) into the proper form for obtaining the inverse Laplace
transform is tedious if done using symbols. It is far simpler to solve Equation (C10) when the pa-

rameter values are substituted into the equation.

e (b) = gfl(E (S)) (c11)
Q [e]
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APPENDIX D
ADDITIONAL EXAMPLES OF THE APPLICATION OF DPI ANALYSIS

This appendix presents a sampling of circuit problems and the solutions obtained by applying
DPI analysis. Inall of the following example problems it is assumed that we are operating in the

linear regions of the active devices.

Example D1

Figure D1. Darlington Circuit

Problem--Find the mid-band voltage gain eo/ei, DPIirl and DPIout using DPI analysis. The

answers should be written in a single step.

Soiution——
DPIim = (R1 I RZ) I l-hiel + (1 + 31) [hie2 + (1 + Bz)REz (D1)
h. ]
N
ie2 (1+ Bl)
PPlout ™ fg, I TRy (D2)

e, (R_R.)

i 1“ 2
e = . ‘ (1+8) (1+p.)R (D3)
o )R, I R2) ”{hiel +(1+ Bl)[hiez + (1 + BZ)REZ]} {hiel + (1 + 8) hiez + (1 + ﬁ2)RE2}} + (RlnRz) 1 27E,

61



Example D2

(o]
t[or s

Figure D2. Emitter-Coupled Differential Amplifier

Problem--Using DPI analysis, write an expression for eO as a function of e1 and e2 and

explain why this is a poor differential amplifier even if the transistor parameters are identical.

Solution--
e R B
- 1 , E / 2
%o - h, (1+8) k. 1+B\ Re
iey 1e2 2/ 2
+ (1 + —_— +j—
big +UFA) IR I\ Rep *\1+5
1 2 2
"2 MB)R
h. F)Re (D4)
1e1 2
h, +(1+ —_
le, ( 52) RE “ 1+ B
1
Now, if we assume h, =h, =h, and B8 =8, = B,we can rewrite Equation (D4) as shown in
1e1 162 ie 2
Equation (D5).

e R e

1 E 2
eo hie hie BRCQ — hie BRCZ o)
L+ (1 + = + = —_—
hie * B RN T8I Be * 155 b t(1+0) RE“<1+B)

Removing common terms from Equation (D5) yields Equation (D)

BR
B CZ

€6 T ell B | 2 B _

(D6)
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Equation (D6) clearly demonstrates why the circuit shown in Figure D2 is a poor differential

amplifier. The term multiplying e, will not permit eO to go to zero when e1 = e2, i.e., the ampli-
fier has a poor common-mode rejection.
Example D3
+V
cc
C
B
Ql
R
. + G s Q, E B
2 +
- RES e
_ -+ I
5 ==

Figure D3. Circuit Using a Vacuum Tube,
Ideal FET, and Transistor

Problem-~-Determine e, by using DPI analysis and the superposition theorem. Write the

solution in a single step.

Solution--

e R R
¢ - 1 Laep ES K

1 1 r +R L
Ro+h +(1+8)|R —— R+ — P L
B ie ES“gmzd - ES gm, RK + T+ m

i e2 RK . ueB "
+
1 Db hie RB . rp+RL L rp+RL+(1+“3)RK L
gm, ESI\T1+p K \1+gu

3

(hie + RB .
+ e5 _1+pB K R
h, + R h +R r TR T. (D7)
R n ie B “ 1 ie B>+ 1 R +|-P L
ES 1+ gm, 1+83 gm, K 1+ &,
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Example D4

Figure D4. Common-Base Amplifier

Problem--Determine the mid-band voltage gain, the DPIm, and the DPI using DPI analysis.

out
Write each answer in a single step.
Solution- -

hie

DPL = |7 P (D8)

DPIout = RL (D9)
e

~ i B

e, © hie (1 +[3) RL (D10)

+
Ri 1+p

It is interesting to note how low the input impedance is if we assume some typical values for

the circuit parameters

Let

= = 100
IEQ 1 ma, B=10

-3
h, = 26 %10 (1+5) = 2600 Q2 (From Equation (31)

EQ in text)
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S, TR 23

Example D5

Figure D5. Level Shifting Cascode Amplifier

Problem--Determine the voltage gain, DPIin and DPIout using DPI analysis.

Solution--

DPI._ = {(R_ Ry \l/h. (D11)

in ( B1 “ B2> ( 1e1>

hie * RCI

= e2 -
DPIout RE + TR (D12)

2 2
e, "8, I "B,

e E AR (D13)

o )R R h, R R_ \+h ¢
(( By Te,) 1 Mo () (8, 1 s,) e,

This circuit is interesting from the standpoint that the signal voltage appearing at the collector
of Ql is almost the same as the signal voltage appearing at the collector of QS‘ No signal current

flows in the base or emitter of Q2 because DPIBase o & oo

= + -+ + oof = oo
DPIBase 9 hietz (1 Bz) [RE2 ] (D14)
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Example D6

i

Figure D6. Cascode Amplifier

Problem--Determine e, using DPI analysis. Assume CB and CE appear as signal short

circuits.
Solution--
(R, | R,) B
. 2 |3 1
e =-i b—v—>——" 1 (B)EI—— 1 R (D15)
o s (R,ZHRB) +hie2 2 1+ﬁ1 C1
Example D7
+V
ce
RC
RF

Q

Figure D7. Two-Transistor
Feedback Circuit
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Problem--Determine eo, DPIin and DPIOu using DPI analysis.

t
Solution--The form of solution presented herein is only one of several that can be obtained

depending upon how the problem is attacked.

In order to analyze this circuit, feedback will be disabled by applying a ficticious generator to

point A,

O
O
%)

here i = = + = ition.
W g f(ex, e, 0) f(eX 0, es) by superposition

First, the portion of iXT due to eX acting alone will be determined.

X3 a X2
=e =e
2 *3 %
e, e
. 1 *3 1 1
1XT(duetoe)=—~+O te— s T e (—-+———) (D16)
X RB RF RC X RB RF+RC
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Second, the portion of i due to e acting alone will be determined.

XT

e
]
1 Let e, eS = e
1 2 °
e ey 8 R
ixp (duetoe) =1 =TL“L’h_z_Bz 1+15 * 1+13 +CR
s 8¢ B ie, 1 1/ \Re™ fr
R
. 1 Pa 1 B1 c
i o= -e e - — + (D17)
+
sc S RB (hiez> (1 + {51> (1 Bl) (RC+ RF)
R
1 1 1 A 1 B1 C
i =e = 4+ o) - [— - + (D18)
+
XT X RB RF+RC s RB hie2 1+B1 1+B1 RC RF
The e, generator is now forced to be equal to the voltage at point A by setting iXT = 0.
Solving for the voltage at point A from Equation (D18) we have
R
e | 1 Ba 1 ! C
g l— - 4 (-
+ B + +
Ry hie2 L+ 8 LHA) \Bc™ By
e = e = (D19)
8 <¢ . ;>
+
Ry ~ Rp*Rg

Now, let us solve for eO as a function of eX and eS by applying superposition, i.e.

B

e =fle , e =0)+ fle =0,¢e )
o x s x s
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RC
(duetoe ) = e RC
e u = —
+ R
o X b 4 RC RF
Therefore, the total expression for eo is
-e B R
s 1 P C
e = B R _ +e - (D20)
+
o hie 2 1+B1 RF+RC C X RC RF

Substituting Equation (D19) into Equation (D20) produces the complete expression for

e, = f(eS), as shown in Equation (D21).
(D21}
1/52><1><51)<RC)
R R (o, +
. - B, By Rp . c Ry \hlez 1+ 31 1+ 8 RC Re
+ + +
o s hie2 1 Bl RF RC C RC R Rl +R iR
B ¥ C
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The DPIin can be found by solving for the total signal current flowing from the e  source when

e =e,.
X A

sT " |{n * R (D22)

Substituting the expression for ep into Equation (D22) yields

1 52) 1 L P < e )
o . Rg oo, ) \T# 5 {145 \Borm,
i =e + -

1 1
sT s hie2 Ry ERp Rl . iR
B F ¢
1+ :
eS RF +RC
PLy "1 ° <hie I <RB)“ R (D23)
ST 2 1, [P L\, [P c
RB hie 1+ ﬁl 1+ ﬂl RC+ R‘F

2

The DPIout can be found in several ways but the simplest is probably to apply an external
generator to the e, terminal and solve for the current. Us ing this technique, the DPI is given
ou

t
in Equation (D24).

(duetoex)=0+————— + | =—1 = e

T

®x
— = DPI
ou

=(R_+R) |l ®RD (D24)
1XT t F B C
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