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One of the fundamental first-principle mechanisms limiting measurements in any physical 

system is the thermodynamic noise of the system.  There are also a number of non-statistical 

noise mechanisms that introduce excess noise, that is noise in excess of the first-principle noise, 

that will further limit measurement sensitivity.  This work considers only the limitations imposed 

by thermodynamics and specifically does not consider any excess-noise limitations.  In all 

physical systems at a temperature above absolute zero, the temperature of the system introduces 

a thermal noise power into the system.  This thermal noise power is a fundamental first-principle 

mechanism and cannot be eliminated or otherwise avoided.  The thermal noise power introduces 

an uncertainty into all observations in the system, and therefore places a lower limit on the 

precision of any measurement.  One traditional gravimeter configuration is shown in Figure 1 

which comprises a proof mass m suspended by a suitable spring of spring constant ks  with 

damping element b  to damp periodic excitations adequately to allow precision observation.  The 

observed parameter is the position of the proof mass as a function of the gravimetric force 

exerted on the mass causing a displacement against the spring constant of the spring.  Thermal 

noise power causes the proof mass to move with a random motion.  This thermal-noise 

displacement sets a lower bound on the precision to which the position of the proof mass many 

be observed.  This thermodynamic noise-limited sensitivity of a simple damped spring-mass 

gravimeter is derived below based on first-principles.  Such excess noise as non-statistical 

variations and creep in the spring, and systematic noise such as respiration of the proof mass 

(absorption and release of gas causing changes in the actual total mass of the proof mass), 

buoyancy, tidal effects, cultural noise, etc. specifically are not considered.   

 

The thermal-noise displacement may be very easily computed from equipartition theorem of 

statistical mechanics1 and specifically Brownian movement.2  According to Boltzmann, the 

kinetic energy of a particle due to thermal excitation is kT 2  for each degree of freedom where k 
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is Boltzmann’s constant (this must not be confused with the spring constant ks ) and T  is the 

absolute temperature in °K.  This holds for individual particles such as atoms as well as for large 

particles such as the mass of the spring-mass system which is a collection of smaller particles.  In 

the case of a collection of particles, the calculations are referred to the center of mass of the 

collection.  Thermal noise is a random process, so peak values of noise parameters have no 

meaning.  The values of noise parameters must be expressed in terms of their root-mean-square 

(rms) values.  If vrms  is defined as the rms velocity of the mass in the simple spring-mass system, 

the average kinetic energy of the mass is simply mvrms
2 2 .  Similarly, if xrms  is the rms 

displacement of the mass, and the spring as well, the average potential energy is k xs rms
2 2 .  Since 

the system is a simple harmonic oscillator, the average kinetic energy must equal the average 

potential energy.  Therefore, the average potential energy must equal the thermal-excitation 

energy. 

 

 Thermal Kinetic Energy = kT
2

 

 where: k = Boltzmann’s Constant 

  T = Absolute Temperature in °K 

 

 Average Mass Kinetic Energy =
mvrms

2

2
 

 where: m = System Dynamical Mass (Effective Proof Mass) 

  vrms
2  = Mean-Square Mass Velocity 

 

 Average Spring Potential Energy = k xs rms
2

2
 

 where: ks = Spring Constant 

  xrms
2  = Mean-Square Mass Displacement 

 

For convenience, define the parameter ω 0  which will later be shown to be the undamped natural 

frequency. 
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 ω 0
2 ≡

k
m

s  (1) 

 

Then, from Boltzmann; 

 

 kT mv k xrms s rms

2 2 2

2 2

= =  

 x kT
krms

s

2 =  (2a) 

 

Solving Equation (1) for ks  and substituting into Equation (2a), 

 

 x kT
mrms

2

0
2=

ω
 (2b) 

 

This result of Equation (2a) is counter-intuitive.  The thermal noise displacement limit is a 

function only of the system temperature and the spring constant — rms thermal-noise 

displacement is directly related to the square root of the absolute temperature of the system and 

inversely related to the square root of the spring constant.  The mass and the damping coefficient 

do not affect the limiting thermal-noise displacement.  For example, a ks  may be chosen for 

some desired thermal-noise displacement at some specific temperature.  Then, any desired 

natural frequency and damping may be obtained without affecting the system noise by 

computing the needed mass and damping coefficient.  Therefore, the system thermal-noise 

displacement may be lowered only by lowering the system temperature or by increasing the 

spring constant.   

 

The results of Equation (2) were developed directly from the kinetic-energy considerations of 

statistical mechanics.  Thermal-noise displacement may also be classically computed from the 

dynamical response of the damped spring-mass system of Figure 1 driven by noise.  The 
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thermodynamic noise power NT  available per unit bandwidth to the damping element at 

equilibrium is simply the total thermodynamic noise power of the harmonic oscillator kT .1,3 

 

 N f kTT ( ) =   per Hertz of bandwidth (3a) 

 

In terms of angular frequency, the thermal noise power per radian is given by Equation (3b). 

 

 N kT
T ( )ω

π
=

2
  per radian/s of angular bandwidth (3b) 

 

The thermodynamic noise power NT  is present by virtue of the temperature of the system.  This 

noise power is manifest in the loss elements of a system.2  In the system of Figure 1, the damping 

element is the source of the thermal noise.  The noise power NT  is the power that the damping 

element could theoretically deliver to an impedance-matched noiseless damping element.  Figure 

2a shows a simple “hot” damping element driving an identical “cold” noiseless damping 

element.  The hot damping element is modeled as a noiseless damping element in parallel with a 

thermal force Fn .  The noise power per unit bandwidth delivered to the cold element is kT  as 

noted above.  Therefore, by inspection, the rms force Fn  is given by Equation (4). 

 

 F f kTbn ( ) = 4   per Hz   rms (4a) 

 

 F kTb
n ( )ω

π
=

2   per Radian s   rms (4b) 

 

The noise source may also be modeled as a displacement source in series with a damping 

element as shown in Figure 2b.  By inspection of Figure 2b, rms displacement source X n  is 

given by Equation (3). 

 X
f

kT
bn =

1
2

4
π

 per Hz   rms (5) 
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Using the noise force model of Figure 2a, the complete noise-driven damped spring-mass 

harmonic oscillator is shown in Figure 3.  From Newton’s Second Law of Motion, force is equal 

to the rate of change of linear momentum. 

 

 ( )F d
dt

mv v dm
dt

m dv
dt

mv ma= = + = +&  (6) 

 

 F ma=   for &m = 0  (7) 

 

The acceleration term a in Equation (7) is the specific term of interest in the typical gravimeter.  

Therefore, Equation (7) suggests that it would be most convenient if the temporal change in mass 

were identically zero.  This is almost a trivial observation, but nonetheless very important to 

formalize.  There are a number of systematic effects that could result in an actual, but 

unexpected, change in the effective mass of the system.  One of these, respiration of the proof 

mass, is noted above.  If the proof mass is submersed in a non-vacuum environment, either 

gaseous or liquid, the environmental constituents will diffuse in and out of the proof mass atomic 

structure as a function of temperature and pressure thereby changing the effective system mass 

over time.  Also, environmental constituents will adhere to the surface of the proof mass.  This 

adsorption will similarly alter the effective system mass.  Further, environmental constituents 

could actually react with the proof-mass material causing a permanent change in the proof mass.  

The proof mass could also be changed by evaporation where either small amounts of mass 

evaporate from the proof mass and condense in the environment, thereby reducing the proof 

mass with time, or small amounts of mass evaporate in the environment and condense on the 

proof mass, thereby increasing the proof mass with time.  The caging mechanism could be 

another source of mass variation.  If the caging mechanism captures the proof mass with any 

type of sliding motion, a small quantity of mass could be transferred either to or from the proof 

mass with each caging.  This could have the effect of both a general trend in the change in 

system mass over long duration and a random change in system mass from use to use of the 

instrument, i.e. caging to caging.  Also, if there are any contaminants in the system, such as a 

lubricant, this contaminant will be transferred to and from the proof mass by evaporation and 

condensation and with caging causing similar mass variations with time.  The unexplained tares 
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reported in the art could be related to a non-zero mass derivative.  Therefore, although it may 

seem a trivial observation that proof-mass time derivative must be made identically zero in a 

precision gravimeter, actually achieving this requirement in harsh field deployment is not trivial. 

 

For the purposes of this work, any changes in the system mass are defined as systematic errors 

and are not considered.  The system mass is defined as constant and Equation (7) applies.  

Therefore, the summation of the forces in the system of Figure 1 identically equals the 

acceleration force experienced by the proof mass. 

 

 mx bx k x F ts&& & ( )= − − +  (8) 

 where:  &x  and &&x  are the first and second time derivatives respectively 

 

For this analysis, the initial spring displacement is defined as zero.  This too is difficult to 

achieve in practice.  The spring will creep with time changing its apparent free length.  Further, 

the spring will be very sensitive to temperature.  Achieving a constant free length in the spring is 

at least as challenging as maintaining a constant proof mass.   

 

The dynamical equation of motion of the simple driven, damped, spring-mass system of Figure 1 

is then given by Equation (9). 

 

 mx bx k x F ts&& & ( )+ + =  (9) 

 

In more canonical form, 

 

 m
k
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k
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k
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⎠
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⎠
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 (10) 

 where: ω 0 ≡ k ms  as noted above 
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It is convenient to define the term Q.  For a system driven at its undamped natural frequency ω 0 , 

Q is defined as 2π  multiplied by the ratio of the total energy stored in the driven system to the 

energy dissipated over one period.  It should be noted that although this definition of Q is 

universal, the actual expression for Q in terms of system parameters will be dependent on the 

physical configuration of the system. 

 

The energy stored in a mechanical second-order system is given by both the potential energy in 

the spring at maximum extension (or compression) or the kinetic energy of the mass at peak 

velocity.  The average power dissipated is simply one half the product of the peak velocity 

squared and the damping coefficient.  The energy dissipated in one period is the product of the 

average power and the oscillation period, and the period of oscillation is simply 2 0π ω .  

 

 E mv
stored = 0

2

2
  or  k xs 0

2

2
 

 where: v0  = Peak Velocity 

  x0  = Peak Displacement 

 

 P v b
avg =

0
2

2
 

 E v b v b
dissipated =

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟ =0

2

0

0
2

02
2π
ω

π
ω

 

 

 Q E
E

m
b
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=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =2 0π ω  

 

From above, ω 0 = k ms  so Q may also be expressed in terms of ks  as well, 
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Equation (10) may now be written in terms of Q. 
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 (12) 

 

 ( ) ( )&& & ( )x x x
k

F t
s

+ + =
⎛
⎝
⎜

⎞
⎠
⎟2 0 0

2 0
2

ζω ω ω  (13) 

 where: ζ =
1

2Q
 

 

From control theory, Equation (13) is the generally canonical form for a second-order system.  

The term ω 0  is the undamped natural frequency and ζ is defined as the damping ratio of the 

second-order system.  Note that ζ is not the same parameter as the damping coefficient b of the 

damping element.  Although the expression for Q is system dependent, the canonical 

characteristic equation is common to any second-order system. 

 

Transforming Equation (13) and solving for the magnitude of x2 : 

 

 ( ) ( )
( )

x F
b
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ω

ω ω ω ω
2 2

2 2

2
0 0

2

1

1
=

+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )  

 

Substituting Equation (4b): 
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 (14) 

 

As seen from Equation (14), the noise displacement is a function of frequency.  Therefore, 

Equation (14) must be integrated over all positive frequency to find the total thermal-noise 

displacement.  A more convenient form for integration is given in Equation (15). 

 

 ( ) ( ) ( )x kT
b

ω
π

ζ ω
ω ζ ω ω ω

2 2
0
2

4 2
0
2 2
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4

2 4 1
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⎣
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⎢

⎤

⎦
⎥
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 (15) 

 

Integrating Equation (15) over the range of all positive ω  yields the results of Equation (16).4 

 

 ( )x d x kT
m

kT
kn

s

ω ω
ω0

2
2

0
2

∞

∫ = = =  for Q ≥ 0 5.  (16) 

 

Therefore, the same result is obtained from the dynamical solution as from the statistical 

mechanics solution of Equation (2), as of course must be the case.  However, this is a deceiving 

result in terms of the performance of the spring-mass gravimeter.  Even though increasing the 

spring constant will reduce thermal-noise displacement, the total signal-to-noise ratio will be 

reduced.  The spring extension is the signal parameter proportional to gravity, and is the output 

parameter observed in the spring-mass gravimeter.  When the spring constant is increased, the 

magnitude of spring extension due to gravity is reduced.  This is a reduction in the observed 

signal.  When the spring constant is increased, the spring extension is reduced by a factor greater 

than the reduction in the thermal-noise displacement which results in reduced signal-to-noise 

ratio even though the actual noise displacement is reduced.  In order to truly optimize the system 

noise performance, the desired output parameter, gravity, must be found in terms of thermal 

noise and the system parameters. 
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The force Fg  exerted on the spring by the proof mass due to gravity is simply mg.  The spring 

force Fs  due to extension (or compression) of the spring is simply k xs .  At equilibrium, these 

two forces are exactly balanced in the spring-mass gravimeter. 

 

 F mgg =  

 F k xs s=  

 mg k xs=  (17a) 

 

The parameter xn  may be considered a fixed, time-invariant length which is the smallest proof-

mass displacement that may be statistically observed.  The change in gravity gn  required to 

cause an xn  change in displacement in the proof mass against the force of the spring may then be 

computed. 

 

 mg k xn s n=  (17b) 

 g x k
m

xn n
s

n= ⎛
⎝⎜

⎞
⎠⎟
= ω 0

2  

 g kT
m

kTk
mn

s= =
ω 0

2

2   rms (18) 

 

This term gn  is the gravity-equivalent noise of the system of Figure 3.  This is the total full-

bandwidth gravity-equivalent noise of the system.  This result does not consider any excess noise 

such as cultural, systematic or 1/f noise contributions.  This result as expressed in Equation (18) 

is much more revealing than that above in Equation (2a).  Equation (18) shows that an increase 

in spring constant will indeed increase the gravity-equivalent noise gn , rather than reduce noise 

as implied by Equation (2a) Equation (14).  From Equation (18), increasing the system proof 

mass will reduce the gravity-equivalent noise.  Since the mass term is squared, changes in the 

mass will have a much greater effect than changes in spring constant.  Although the effect of the 

spring constant and the mass on the system are not orthogonal, these two parameters may be 

selected independently to provide a specific gravity-equivalent noise and a specific undamped 
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natural frequency.  In general, the greater the mass and the lower the undamped natural 

frequency the lower the gravity-equivalent noise. 

 

The gravity-equivalent noise provided by Equation (18) is the rms noise level.  Signals having 

peak amplitudes equal to the rms level will be obscured by the noise and will generally be 

unobservable.  A more useful noise parameter is the tangential noise.  If the noise is Gaussian, 

stationary, ergotic and white, the tangential noise is a factor of 2.208 greater than the rms 

noise.5,6 

 

 g gntan .= 2 208  (19) 

 

The system parameters are known for several well-known gravimeters7,8:  LaCoste & Romberg, 

GWR, Delta-g and a superconducting gradiometer described by Chan, et. al.  The limiting 

thermodynamic gravity-equivalent noise may be computed for these instruments.  These data are 

shown in Table 1. 

 

 

 

 

Table 1.  Gravimeter Noise Limits 

Quantity L&R GWR Delta-g Chan 

[ ]m g  10 3.0 0.050 400 

[ ]k Nt ms  6.86x10-4 6.22x10-3 4.05x10-5 5.70x103 

[ ]ω o s1  0.262 1.44 0.900 119 

[ ]T K°  323 4.2 333 ~4 

[ ]x mn rms  2.55x10-9 9.65x10-11 1.07x10-8 9.84x10-14 

[ ]g Galn rmsµ  0.0175 0.0200 0.863 0.140 

[ ]g Galtan µ  0.0386 0.0442 1.91 0.310 
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As expected from Equation (18), the L&R unit having the largest proof mass of the first three 

units exhibits the lowest thermal-noise displacement even though the GWR unit operates at a 

much lower temperature.  The device described by Chan, even though it operates at a very low 

temperature and comprises a very large proof mass, exhibits an extremely high spring constant 

which results in comparatively high total gravity-equivalent noise. 

 

The noise may be reduced by averaging the observation over a longer period.  However, adding 

a separate filter element, whether it be mechanical, electronic or optical, will add additional 

noise sources and complexity to the system.  Reducing the undamped natural frequency has the 

same effect as increasing the observation period.  A lower-noise approach to reducing noise by 

increasing the observation period is to simply increase the proof mass.  This will automatically 

provide additional filtering without the need to add any additional system elements. 

 

A useful parameter to compute is the equivalent variation in elevation corresponding to the 

gravity-equivalent noise.  The derivative of earth gravity with respect to earth radius is given by 

Equation (20). 

 

 dg
dr

g
r

= −
2 0

0

 (20) 

 where: g0  = Nominal Earth-Surface Gravity 

  r0  = Nominal Earth Radius 

 

The change in gravity with elevation at the earth surface is 0.308µGal/mm, or the change in 

elevation with gravity is 3.25mm/µGal.  The LaCoste & Romberg instrument, using the 

tangential-noise limit, is capable of detecting a change in elevation of about 0.125mm based on 

first-principle noise limits.  That distance is roughly the thickness of one sheet of the paper on 

which this manuscript is printed. 

 

It is also useful to compare these results to the radial acceleration ar  at the earth surface due to 

the earth rotation.   
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 a r
tr

d

=
4 2

0
2

π  (21) 

 where: r0  = Radial Radius of Rotation 

  td  = Rotational Period 

At the equator, the radial acceleration is 3.369Gal. 

 

The rate of change of the radial acceleration with elevation is given simply as the derivative of 

the radial acceleration with respect to the radius of rotation. 

 

 
da
dr t

r

d

=
⎛
⎝
⎜

⎞
⎠
⎟

2
2

π  (22) 

 

Therefore, at the equator, the rate of change of radial acceleration with elevation is 0.529µGal/m.  

This shows that the effect of the earth rotation is a significant factor.  This effect will be a 

function of both the latitude where the system is deployed and the change in elevation that the 

system experiences during operation. 

 

Another useful parameter is the equivalent change in mass corresponding to the gravity-

equivalent noise.  Solving Equation (17a) for m and substituting the values of ks  and xn for the 

LaCoste & Romberg Instrument from Table 1, the change in mass that corresponds to the rms 

thermal-noise displacement is 1.78e-13 kg.  This is a rather small mass.  For a Tungsten (W) 

proof mass (183.85g/mole), this mass-equivalent noise is equivalent to 5.84e11 W atoms.  

Therefore, the mass-equivalent noise corresponds to a large number of proof-mass atoms so the 

system will not be at all affected by single atomic-level events.  However, even though 1011 

atoms may seem a rather large number, on the scale of human activity it is an extremely small 

quantity.  It is very possible that much greater mass (perhaps several ηg) could be transferred to 

or from the proof mass with each application or release of a less-than-competent caging 

mechanism.  Further, the absorption and adsorption of atmospheric constituents by the proof 

mass as well as movement of contaminants such as minute quantities of lubricants to and from 

the proof mass could easily result in much greater effects than those due to thermodynamic 
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noise.  If measurement precision approaching the thermal-noise limit is to be achieved, the 

attention to detail in the management of the spring-mass system must be meticulous.   

 

The present precision in the state of the art in precision gravity measurement is nominally about 

1µGal.  The noise-equivalent gravity of the LaCoste & Romberg instrument is about two orders 

of magnitude below that present measurement precision.  This suggests that there is very much 

room for improvement.  It is generally relatively straight forward to effect sensing systems 

providing precision to within an order of magnitude of the thermodynamic noise limits, and with 

very careful design, sensing to within a percent or two of thermal noise limit is possible.  For 

example, a modest quality high-fidelity sound system will exhibit a limiting system noise 

perhaps a factor of ten above the thermal noise, and a high-quality, low-noise satellite receiver 

may exhibit a limiting noise only one percent above the thermal noise limit.  Therefore, 

thermodynamic noise is not the limiting mechanism limiting the present precision to 1µGal.  If 

the other perturbing influences can be brought under adequate control, first-principle limitations 

suggest that with the LaCoste & Romberg instrument a measurement precision on the order of 

0.05µGal could be possible. 
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