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One of the very common parameters that we use in rf applications is Q , or “Quality Factor.” 

But, just what is this parameter Q ?  This brief paper derives Q  in terms of typical circuit 

parameters based on the fundamental definition of the Quality Factor.  A few examples of the 

proper and improper common uses of Q  are then reviewed.  Don’t let the math bother you too 

much; it is just included to show you were the formulae are derived. 

 

Q  is a parameter used to measure “how good” a resonant circuit is — in other words, how well 

it oscillates, or resonates.  So our first useful piece of information is that Q  applies only to a 

resonant network.  For example, a clock pendulum is an example of a simple resonator.  If the 

pendulum is pulled back to some point, potential energy is “stored” in the pendulum since it is 

raised slightly above its rest position.  When the pendulum is released, it “oscillates” back and 

forth.  At the exact bottom of its swing, the pendulum is at its lowest point, point of zero 

potential energy relative to its path of motion, and it has maximum velocity at this point.  All the 

potential energy stored at the top of the swing where it was released is exchanged for “kinetic” 

energy at the bottom of the swing.  At the bottom of the swing, the energy is “stored” in the 

pendulum as “kinetic” energy.  The pendulum of course will not swing forever if not driven in 

some manner.  This is due to losses, or resistance, in the mechanical system, such as air drag and 

friction loss in the suspension mechanism of the pendulum.  These losses cause the amplitude of 

the pendulum to gradually diminish, or “ring down” as it is commonly referred to for a resonant 

network.  The higher the losses, the quicker the pendulum amplitude diminishes.  Q  is a 

measure of how low the losses are and how long a resonator such as a pendulum will swing — 

the lower the losses the higher the Q  and the slower the pendulum amplitude will diminish.   
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Now the very subtle but very important point to get from this example is that the parameter Q  

applies only to a very special type of network:  a resonant network that contains two different 

types of energy storage and some type of loss.  In the mechanical pendulum system, the two 

energy storage elements are the potential energy of the height of the pendulum and the kinetic 

energy of the velocity of the pendulum, and the loss element is all of the friction losses of the 

system.  In an electrical network, one can make the analogy (as well as others) of potential 

energy being the charge in a capacitor.  This is a somewhat logical analogy since when a 

capacitor is charged, there is nothing moving, so it corresponds logically to pulling the pendulum 

up to some position and holding it there.  Similarly, energy is stored in an inductor by a flow of 

current in the inductor, so a flowing inductor current can be thought of as being equivalent to the 

kinetic energy in the moving pendulum.  The system losses are modeled as a resistance in the 

electrical circuit.  So, in an electrical circuit, the system energy actually moves from one circuit 

element to another, back an forth between the inductor and capacitor, and the energy stored in 

the system is slowly dissipated be the resistance.  This is a little easier to see than the pendulum 

example.  But again the important thing to understand is that  Q  only applies to a circuit with 

one inductor, one capacitor and one resistor.  This network is a second-order system often 

termed a “simple harmonic oscillator.”  And, specifically, Q  applies only to a second-order 

network. 

 

The fundamental definition of Q  is based on a simple second-order network in terms of its 

undamped natural frequency.  Q  is defined as the ratio of the total energy stored in the 

resonant network to the energy dissipated per radian of the drive signal when the network is 

driven at its undamped natural frequency.  In terms of a cycle of the drive signal, Q  is defined as 

2π  times the energy stored divided by the energy dissipated per cycle of the driving source.  

This is not as complicated as it sounds, however there are some subtle but very important 

features of this definition.   

 

First a “simple second-order network” as noted above is simply a resonant circuit comprising 

some inductance, some capacitance, and some resistance.  As we will see below, if the losses are 

zero, the Q  will be infinite.  Also as in the example above, Q  is not limited to electrical circuits.  
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One may properly compute the mechanical Q  of a clock pendulum, or the acoustic Q  of an 

auditorium.   

 

We may configure our harmonic oscillator as a parallel-resonant network or as a series-resonant 

network.  Although both of these configurations have a specific value of Q , the computation of 

Q  is different for the two.  For example, in a parallel-resonant circuit, it will be shown below 

that as the resistance becomes very large the Q  becomes very large, but in the series-resonant 

network, Q  becomes very large as the resistance becomes very small.  So in the parallel-

resonant case, the Q  is directly related to the network resistance, but in the series-resonant case 

it is related to the reciprocal of the resistance.  So, when we speak of Q  or compute Q  for some 

circuit, we must know what type of circuit we are talking about.  The harmonic oscillator part of 

the definition should be pretty clear, but if is not, just continue on — when we get to the actual 

calculations, it should clear up a bit more. 

 

Now for the second part of the definition:  total energy stored.  In a simple harmonic oscillator, 

such as an R-L- C network, there are two elements that store energy:  the inductance and the 

capacitance (or their equivalent in a mechanical system).  The total energy stored in the network 

at any instant is simply the sum of the energy stored in the inductance and the energy stored in 

the capacitance.  Think about the clock pendulum again.  Suppose that it is an “ideal” pendulum 

without any loss.  Then it would swing forever.  Now, if it swings forever, it loses no energy.  

Also, since it always swings the same, in other words the magnitude of its swing does not change 

from swing to swing, it gains no energy either.  So, if no energy leaves the pendulum system and 

no energy enters it, the energy in the ideal pendulum system must be constant.  The energy in the 

system simply moves between potential energy and kinetic energy, and at any instant in the 

swing, the total energy in the system is simply the sum of the potential energy of the pendulum 

by virtue of its height above its minimum position at that instant and the kinetic energy of its 

velocity at that instant.  Since the ideal pendulum neither loses nor gains energy, this sum must 

be always constant no matter where in the swing the pendulum is.   
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Suppose that we now take an electrical parallel R-L- C network and drive it with a sinusoidal 

voltage source.  Since we are driving this circuit with a sinusoidal source, the voltage across the 

capacitor will be sinusoidal, and since the energy stored in the capacitor is proportional to the 

capacitor voltage squared, the energy stored in the capacitor will go from zero at the zero 

crossing of the voltage across the capacitor to some value proportional to the peak capacitor 

voltage squared.  Similarly, the inductor current will be sinusoidal as well, and since the energy 

stored in the inductor is proportional to the inductor current squared, the energy stored in the 

inductor will vary from zero to some value related to the square of the peak-inductor current.  

So, it seems that the value of Q  that we will get depends on where in the cycle of the drive 

signal we compute the Q  since the energies stored in the capacitor and the inductor seem to 

depend where we are in the cycle.  But, we will show that if we drive the R-L- C network at 

precisely its undamped natural frequency, which will be defined shortly, the sum of the energy in 

the inductor and capacitor will always be constant.  The total stored energy simply moves back 

and forth between the inductance and the capacitance.  For example, when the voltage across the 

capacitor is zero, all the energy is in the inductor, and when the inductor current is zero, all the 

energy is in the capacitor.  At any point in between, some of the energy is in the inductor and 

some in the capacitor, but the total energy is always constant.  If we know the amplitude of the 

driving signal, we can compute the voltage signal across the capacitor and the current through 

the inductor.  We can then state that if we know the drive signal magnitude and frequency, we 

can compute the inductor and capacitor signals. 

 

Now for the final part of the definition:  the energy dissipated per radian, or per cycle, of the 

driving source.  This may bit a little confusing, so huddle around and listen closely.  Power is 

simply the flow of energy.  In other words, a specific delivered power means that a given amount 

of energy passes into a load in some specific time.  Energy has the units of watt-seconds (joules), 

and of course power the units of watts.  So if there is some amount of energy in watt-seconds 

flowing into a load in some specific time, the power is simply the energy that flows into the load 

in that time divided by the time.  For example, if an energy of 100W-s flows into a load in 10s, 

the power is 100W-s divided by 10s, or 10W.  Simple enough.  So, a continuous flow of energy 

per time is a constant power.  This may be confusing since we tend to think of power flowing in 
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a circuit, but it is the energy that flows through the circuit resulting in power being delivered at 

some load.  So power P is equal to the energy E delivered over some time T divided by that time 

T, 

 

 Power Energy
Time

P E
T

= ⇒ =  (1) 

 

Remember that the T term in Equation (1) is the time over which the energy E is delivered.   

 

In order to compute Q , we need to know the energy dissipated per radian, or per cycle, of the 

driving source.  Well, a cycle of the driving source occurs in a specific time, specifically the 

period of the signal, or one over the frequency of the source signal.  Also, in our simple driven 

harmonic oscillator, if we choose the source right, we will be able to very easily compute the 

power dissipated in the oscillator.  The only element that can dissipate power is the resistive 

element of the R-L-C network.  So, the power dissipated in the simple harmonic oscillator is 

simply the power dissipated by the resistive element. 

 

Now, Equation (1) gives us the power that is continuously dissipated when a specific flow of 

energy is delivered to a load over a specific time.  So, if we solve for the energy E in terms of the 

power P and the time T, what we have is the energy required to be delivered to the load in time T 

in order to result in a dissipated power P.   

 

 E P T= ⋅  (2) 

 

Now, if we know the power dissipation, for any time interval we may compute the energy that 

must be delivered over that interval in order to achieve that power.  Suppose we chose the time 

interval as that of one cycle of our driving source.  Let that time interval be defined as “ ts .” 

 

 t
fs

s
=

1
 (3) 
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So, in order to deliver a power P, the energy E f  that must be delivered over a cycle of the source 

is given by Equation (4). 

 

 E P t
P
ff

s
= ⋅ =  (4) 

 

The energy E f  is delivered over 2π  radians of the source, which is one cycle of the source 

signal.  So, if we divide both sides of Equation (4) by 2π , we will have the energy dissipated per 

radian of the source.  Let that energy be Ea  for the energy dissipated in terms of the angular 

frequency (radians per second) of the source, specifically the energy dissipated per radian.   

 

 E
E P t P

fa
f

s

= =
⋅
=

2 2 2π π π
 (5) 

 

We should now have everything we need to compute Q , well sort of anyway.  We of course 

know the values of the inductance, capacitance and resistance of the network and whether it is a 

parallel-resonant or series-resonant circuit since those are given parameters.  We have a 

frequency f s  at which we are driving our simple harmonic oscillator, we know the total energy 

stored in the network since we know the amplitude of the signals at the inductance and 

capacitance, and we know the energy dissipated per cycle of the driving signal since we know 

the power being dissipated by the resistive element of the network.  So, given only the values of 

an R-L-C network and its configuration, parallel or series, we may compute the Q  of the 

network, theoretically. 

 

Now let’s look at a real circuit.  Figure 1 shows a simple parallel R-L-C circuit driven by a 

voltage source ( )V t  where  

 

 ( ) ( )V t V Sin ts= 0 ω  (6) 
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The term ωs  is simply the angular frequency of the driving source where, 

 

 ω πs sf= 2  (7) 

 

We have seen this term before — look back at Equation (5).  A voltage source is used to drive 

this configuration since this will simplify the math a bit, but a current source could have just as 

well been used.  By choosing a voltage source, we define the capacitor and resistor voltage so 

the only signal that must be computed is the inductor current.   

 

First the easy part — computing the continuous power dissipation.  The only element in the 

circuit that dissipates power is the resistance (this assumes that there is no radiation from the 

inductance and wiring and that there are no other resistances in the circuit).  Notice that since the 

source was conveniently chosen as a voltage source driving the parallel network, this voltage 

source is simply connected across the resistor.  When we drive a resistance with a sinusoidal 

voltage source of peak value V0 , the power dissipation is simply one half the square of the peak 

voltage divided by the resistance.  The fact that the inductance and capacitance are also 

connected across the source is of no consequence since at the undamped natural frequency, the 

impedance of a parallel-resonant L-C network is infinite.  The power dissipated by the resistor is 

simply related to the voltage across it squared. 

 

 P
V

R
V
R

= =
0

2

0
2

2 1
2

 (8) 

 

The next part is a bit more complicated — finding the total stored energy (there is a very easy 

way to do this, but we will do it the hard way just so everyone will believe the easy way).  The 

capacitor first.  The energy in the capacitor at any instant in time is simply one half the capacitor 

voltage squared multiplied by the capacitance.  Suppose that we begin driving our network at the 

zero crossing of the driving source and we define that time as zero time.  Then at a later time t1  

sufficiently long that all transients have died away we look at the voltage across the capacitor. 
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 ( ) ( )V t V Sin tc s1 0 1= ω  (9) 

 

At that time t1  the energy ( )E tc 1  stored in the capacitor is simply, 

 

 ( ) ( )[ ] ( )E t C V t CV Sin tc c s1 1

2

0
2 2

1
1
2

1
2

= = ω  (10) 

 

Now the inductor.  The energy stored in the inductor is one half the inductor current squared 

multiplied by the inductance.  

 

 E LIL L=
1
2

2  (11) 

 

The inductor voltage is equal to the inductance times the time derivative of the inductor current.  

So, the inductor current is the integral of the inductor voltage divided by the inductance. 

 

 ( ) ( )I
L

V t dt
L

V Sin t dtL L s= =∫ ∫
1 1

0 ω  (12) 

 

 ( )I
V

L
Cos tL

s
s= − 0

ω
ω  (13) 

 

The Cosine term in the inductor current shows that the inductor current is 90°, or π 2  radians, 

out of phase with respect to the inductor voltage, and the minus sign shows that it is “lagging” 

the voltage — in other words, when the voltage reaches a peak across the inductor, the inductor 

current will reach its peak 90° later. 

 

Therefore, at time t1  the energy in the inductor is given by Equation (14). 

 

 ( ) ( )[ ] ( )E t L I t L
V

L
Cos tL L s1 1

2 0
1

21
2

1
2

= = −⎡
⎣⎢

⎤
⎦⎥ω

ω  
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 ( ) ( )
E t

V Cos t
LL

s

s
1

0
2 2

1
22

=
ω

ω
 (14) 

 

The total energy ET  in the network at any time t1  is simply the sum of Equations (10) and (14). 

 

 ( ) ( ) ( )
E t

CV Sin t V Cos t
LT

s s

s
1

0
2 2

1 0
2 2

1
22 2

= +
ω ω

ω
  

 

 ( ) ( )= +⎛
⎝⎜

⎞
⎠⎟

1
2

1
0

2 2
1 2

2
1V CSin t

L
Cos ts sω

ω
ω  (15) 

 

Equation (15) shows that in general the total energy in the network is a function of time — as t1  

changes ET  changes.  This is very important to note.   

 

We have not yet defined ωs .  As noted above, it is simply 2π  times the driving frequency, but 

we have not yet selected a driving frequency.  Suppose that we define a network-related 

frequency ω 0  by Equation (16). 

 

 ω0
2 1
≡

LC
 (16) 

 

In other words, for a given inductance and capacitance of a parallel R-L-C network, the 

frequency ω0  is defined by Equation (16).  In network theory, this frequency is termed the 

undamped natural frequency of the network.  This however is not the resonant frequency — the 

resistance element of the network causes the resonant frequency to be shifted from the undamped 

natural frequency.  The resonant frequency is termed the natural frequency of the network.  We 

will calculate the natural frequency later in terms of Q  to show how the natural frequency is 

shifted from the undamped natural frequency by the network Q .   
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Now suppose that we drive the network at precisely the undamped natural frequency, in other 

words we make ω ωs = 0 .  First, substitute ω 0  for ωs  in Equation (15).  

 

 ( ) ( ) ( )E t V CSin t
L

Cos tT 1 0
2 2

0 1
0

2
2

0 1
1
2

1
= +

⎛

⎝
⎜

⎞

⎠
⎟ω

ω
ω  (17) 

 

Then substitute the value for ω 0
2  form Equation (16) in the coefficient of the Cosine term in 

Equation (17). 

 

 ( ) ( ) ( )E t V CSin t

LC
L

Cos tT 1 0
2 2

0 1
2

0 1
1
2

1
1

= +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ω ω  

 

 ( ) ( )[ ]= +
1
2 0

2 2
0 1

2
0 1CV Sin t Cos tω ω  

 

But, 

 

 ( ) ( )[ ]Sin t Cos t2
0 1

2
0 1 1ω ω+ =  

 

So, 

 

 ( )E t CVT 1 0
21

2
=  (18) 

 

Now that is an interesting result.  The total energy stored in the network is independent of time if 

the system is driven at its undamped natural frequency ω 0  as defined in Equation (16), and is 

equal to one half the capacitance times the peak magnitude of the voltage of the driving source 

squared.  This was the easy way of finding the total stored energy mentioned above — simply 
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the “potential energy” stored in the capacitor at the peak of the voltage swing.  But here we 

actually derived it so that we can see where it comes from.  When the voltage across the 

capacitor, and the inductor and resistor as well, is at its peak value, the inductor current is zero so 

all of the total stored energy is in the capacitor.  Similarly, when the voltage is zero, the current 

in the inductor will be at its peak value.  The total energy will then be one half the inductance 

times the peak inductor current squared.  This can be shown by solving Equation (16) for C  and 

substituting that value into Equation (15). 

 

 C
L

=
1

0
2ω

 (19) 

 

 E CV
L

V L V
LT = =

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1
2

1 1
20

2

0
2 0

2 0
2

0
2 2ω ω

 

 

 E L
V

LT =
⎛
⎝
⎜

⎞
⎠
⎟

1
2

0

0

2

ω
 (20) 

 

From Equation (13) it is seen that the squared term in Equation (20) is simply the peak value of 

the inductor current.  Therefore, the total energy ET  is constant and given by Equation (21) 

 

 E CV LIT = =
1
2

1
20

2
0

2  (21) 

 

The total energy in the simple harmonic oscillator may be computed as either one half the 

capacitance times the square of the peak capacitor voltage or one half the inductance times 

square of the peak inductor current.  In the case of our parallel network driven by a voltage 

source, we always know the capacitor voltage since we are driving it directly with the source.  

So in the case of the parallel network, it is most convenient to compute the total energy of the 

network using the capacitive form for the total energy given by Equation (21). 
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Finally before we are actually ready to compute Q  we must compute the energy dissipated per 

cycle of the driving source.  We can find this from Equations (5) and (8), 

 

 E P
f

V
f Ra = =

2
1
2 20

0
2

0π π
 

 

We are now ready to actually compute Q .  Let Qp  represent the Q  of a parallel-resonant 

circuit. 

 

 Q
E
E

CV

V
f R

f RC RCp
T

a

= = = =

1
2

1
2 2

2
0

2

0
2

0

0 0

π

π ω  (22) 

 

We can also find Q  in terms of the inductance.  Substituting Equation (19) into Equation (22). 

 

 Q R
L

R
Lp =

⎛

⎝
⎜

⎞

⎠
⎟ =ω

ω ω0
0

2
0

1  (23) 

 

Now we notice in Equation (22) that the value of Q  is given in terms of the capacitance and ω0 , 

and in (23) in terms of the inductance and ω0 .  Suppose that we solve Equation (22) for ω0  and 

substitute it into Equation (23).   

 

 Q R C
Lp =  (24) 

 

This result is a bit more informative.  Notice that in this form, Q  is a function of R , L  and C , 

but is not at all a function of frequency.  This demonstrates that Q  is truly a network parameter 

and function only of the circuit parameters, and specifically Q  is not a function of the frequency 

at which the network is operating.  Q  is just as much a network parameter as the values of the 
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network elements, the R C⋅  time constant or the L R  time constant.  This is an important 

observation.  Also, since the term C
L  has the units of one over resistance (or L

C  has the 

units of resistance), Q  is dimensionless. 

 

So, summarizing the parallel R-L-C network case, 

 

 Q RC R
L

R C
Lp = = =ω

ω0
0

 (25) 

 

Now, consider a series-resonant circuit such as shown in Figure 2.  Here the series-resonant 

configuration is driven by a current source for convenience just as the parallel circuit was driven 

with a voltage source.  By driving with a current source, we precisely know the current in each 

element.  This makes it very convenient to compute the power dissipated in the resistor and the 

total energy stored from the inductor peak current. 

 

The power dissipation is simply one half the square of the peak current times the resistance. 

 

 P I R=
1
2 0

2  (26) 

 

And the energy dissipated per cycle, 

 

 E P
f

I R
ff = =

0

0
2

0

1
2

 (27) 

 

And the energy dissipated per radian, 

 

 E P
f

I R
fa = =

2
1
2 20

0
2

0π π
 (28) 
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Using the same approach as above we can show that the total energy stored in the system is 

again equal to one half the inductance times the square of the peak inductor current, and of 

course one half the capacitance times the square of the peak capacitor voltage.  So, we will not 

derive this for the for the series network — for those of you that are interested (or don’t believe 

it), this derivation is “left as an exercise to the reader,” to put it in academic terms.   

 

In the case of the series circuit driven by a current source, we know the inductor current so the 

energy expressed in terms of the inductance is the most useful here. 

 

 E LIT =
1
2 0

2  (29) 

 

Let Qs  be the Q  of the series circuit. 

 

 Q
E
E

LI

I R
f

f L
R

L
Rs

T

a

= = = =

1
2
1
2 2

20
2

0
2

0

0 0

π

π ω
 (30) 

 

Solving Equation (16) for L  and substitution into Equation (30), 

 

 Q
R C RCs =
⎛

⎝
⎜

⎞

⎠
⎟ =

ω
ω ω

0

0
2

0

1 1  (31) 

 

Then solving for ω0  in Equation (30) and substituting into Equation (31), 

 

 Q
R

L
Cs =

1  (32) 

 

Then, summarizing for the series case, 



 15

 

 Q
L

R RC R
L

Cs = = =
ω

ω
0

0

1 1  (33) 

 

So there we have it, the Q  for both a parallel resonant network and a series resonant network, 

and they are not the same.  Interesting.  Equations (24) and (32) are perhaps the most important 

of all those presented in this paper.  These show that the Quality Factor Q  of a network it a true 

network parameter, and that Q  is totally independent of the actual operating frequency of the 

network. Q  is a defined network parameter defined totally in terms of the network element 

values, that is the values of the network R , L , and C . 

 

Let’s think about what we have discovered here.  First, and very very important, we have defined 

Q  in terms of a very specific frequency — the undamped natural frequency of the network.  If 

we use any other frequency, Equation (15) shows that the Q  value is then a function of time and 

is not a constant value based only on the network component values.  But if we define the Q  in 

terms of the undamped natural frequency, given by Equation (16), the value of Q  becomes 

independent of time and dependent only on the circuit values.  This is shown explicitly in 

Equations (24) and (32).  The Q , or Quality Factor, is a general measure of the quality of a 

resonant network, or just how well it resonates and how slow the network rings down when 

excited.  It is simply a measure of the loss in the network — the higher the losses the faster the 

network will ring down and the lower the Q .  To be a universal general network parameter, it is 

most convenient to define Q  totally in terms of the network parameters alone.  Therefore, the 

specific frequency for computing Q  from the fundamental definition of Q  is defined as the 

undamped natural frequency of the network.  So, Q  is simply another network parameter such 

as the network element values and the undamped natural frequency, the L R  time constant and 

the RC time constant (as well as others).  For example, if you are given the values of R , L  and 

C  for a parallel-resonant network, without any other information you can compute both the 

undamped natural frequency, from Equation (16) above, and the network Q , with Equation 
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((24).  No additional information is needed.  Specifically you do not need to know at what 

frequency you are operating the network. 

 

Now, does it make sense that the equation for Q  should be different for a parallel-resonant 

network as compared to a series-resonant network?  Q  is a measure of the losses of a resonant 

network — the higher the Q  the lower the network losses.  You might say that Q  is a measure 

of the “loss-lessness” of the network.  So, it seems that the more resistance that you have in a 

network the higher the loss and the lower the Q  must be, but that is not quite right.  Consider the 

parallel network of Figure 1 for a moment.  Suppose that we start out with some value of 

resistance and some specific drive voltage.  We can easily compute the power dissipated in the 

network (Equation (8) above) since we know the resistance value and the voltage across it.  Now 

suppose that we keep the drive voltage the same but we make the resistor value larger.  The 

power dissipated will go down since P E
R=

2
.  Since Q  is a measure of loss-lessness, we 

would expect Q  to increase since the loss decreased.  And from Equation (25) we see that this is 

true.  As we make the resistance value higher, the Qp  becomes higher, and at an infinite value of 

resistance, the value of Qp  is also infinite.  So for the parallel network, higher resistance means 

higher Qp . 

 

Now consider the series network if Figure 2.  Suppose that we have a specific drive current and a 

specific value of resistance.  Again we can compute the power dissipated in the network since 

we know the resistance and the current through it ( P I R= 2 ).  Now if we wish to reduce the 

power dissipation, we must reduce the resistance value.  So, as we reduce the resistance value of 

the series network, the value of Qs  will increase.  This is shown by Equation (33).  If the 

resistance value is made zero, the value of Qs  will become infinite.   

 

So, the computation of the value of Q  should be different for the parallel and series networks.  

This is an important point to remember. 
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Now let’s look briefly how we may misuse the circuit parameter Q .  Look back at 

Equation (33).  Look for example at the expression of Q  in terms of the inductance.  It appears 

that in this form, the value of Q  is independent of the capacitance.  This is not really true 

because the term ω 0  is a function of the capacitance, but suppose that we ignore this fact too.  

Now suppose that we change the very specific ω 0  term to a general ω  term.  We cannot 

properly do this, but suppose that we do it anyway.  Now rewriting Equation (33) in terms of our 

improper use of ω  we get the following expression.  I did not give this an equation number since 

I want to make sure that this is not mistaken for a valid equation for Q ! 

 

 Q L
Rp =
ω  IMPROPER EQUATION! 

 

Unfortunately, this expression probably looks all too familiar.  This expression looks as though if 

we were given an inductor with its resistance value, inductance value and some frequency, we 

could compute the Q value of this inductor.  For example, if we have an inductor, say 1µH, that 

has a resistance of say 1 ohm that we use as a series power-supply inductance to reduce power-

supply noise in a 10.7MHz IF amplifier, it appears that we can calculate the Q  of this inductor 

from the improper equation above as 63 from ωL
R .  This is not correct.  From Equations (24) 

and (32) we see that we must have some specific network capacitance to compute Q .  And even 

more confusing, if we were to try to apply those equations, which would we use, the parallel case 

or the series case? 

 

When we look at inductor specifications, one of the parameters that is given is the Q  of the 

inductor, usually at some frequency (hopefully).  Just what does that mean?  Well, whatever the 

manufacturer had in mind when it made that specification.  It could be the Q  at the self 

resonance of the inductor, the self-resonant natural frequency, but recall that the natural 

frequency is not the same as the undamped natural frequency.  Or it could be that if the inductor 

is resonated with some capacitor at the specified frequency, this is the Q  that will result.  This is 

most likely what the inductor Q  specification typically means.  But, is that the natural frequency 
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or is it the undamped natural frequency?  And is it parallel resonant or series resonant?  If the Q  

is high, (>~10), the natural frequency and the undamped natural frequency will be very close 

together so it is not too important which is used in a practical sense.  But it is important if you 

wish to understand the basic concept of Q .  As for series or parallel resonance, either may be 

used depending what you are interested in.  For example, if a series-resonant network is 

assumed, the specified Q  value, and a corresponding capacitance computed from the specified 

frequency and specified inductance, may be used to compute the equivalent series resistance of 

the inductor from Equation (32).  And, if a parallel network is assumed, the specified Q  value 

may be used to compute the equivalent parallel resistance of the inductor using Equation (24).  

Both of these resistances are perfectly valid, and indeed given either, the other may be computed.  

They are simply different models of the inductor — ideal inductor in series with a series 

resistance, or ideal inductor in parallel with a shunt resistance.   

 

The most important point to understand from this paper is that the parameter Q  is a true network 

parameter as shown by Equations (24) and (32), and that Q  is a function of only the network 

parameters R , L , and C  of a second-order, resonant network.  And equally as important as 

shown by Equations (24) and (32), Q  is not a function of the operating frequency of the network 

just as the values of the network resistance, capacitance or inductance, or the L
R  or RC  time 

constants, or the undamped natural frequency 1
LC

 are not a function of the operating 

frequency.  This is a very important concept to always remember when applying the parameter 

Q . 

 

If we were to “charge” an R-L- C network, for example by putting a charge in the capacitor, and 

allow it to “ring down,” what we will see, if the “ Q ” is high enough, is an exponentially 

decaying sinusoidal signal.  For example, in a parallel R-L-C network, if we charge the capacitor 

to some voltage and then let the network go, we will see the voltage across the network oscillate 

sinusoidally and decay exponentially in amplitude with time.  The exact equation of the network 

voltage is given by Equation (34). 
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The frequency ω n  is the free ringing frequency, or natural frequency, of the network.  It is 

important to notice that it is not equal to the undamped natural frequency ω0 .  The effect of the 

resistance in the circuit is to lower the free ringing frequency below the natural frequency.  If we 

substitute Equation (16) into Equation (34) and we solve Equation (23) for L  and also substitute 

into Equation (34), the dynamical response as a function of Q  may be found. 
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Also, it can be shown that Equation (35) applies to both parallel and series networks. 

 

Now for a practical example.  Suppose that we have a nominal 2.5 meter monopole antenna 

which we wish to match to a 50-ohm transmitter at 5MHz.  If we do a good job on the ground 

plane, at the feed point this antenna will look like about a one-ohm radiation resistance in series 

with about a 26pf capacitance.  Let’s match this antenna with a simple series inductance and a 

shunt capacitance.  I call these two elements the compensating inductance and the matching 

capacitance.  Let the transmitter frequency be fT , or ω T  in angular form.  The equivalent circuit 

is shown in Figure 3.  In Figure 3 I have shown the compensating inductance Lc  as two 

inductors in series.  One of these, Lr , is the inductance required to resonate the antenna 

capacitance at the operating frequency to make the feed point look resistive and exactly equal to 

the antenna radiation resistance.  The second inductor, Lm , is the inductance required in the L-C 
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matching network to match the radiation resistance to the transmitter 50-ohm impedance.  Of 

course in actual practice, these two inductors would simply be a single inductor, Lc , equal to the 

sum of the two series inductors.  Separating the inductor into two individual inductors makes it 

easier to see what is going on.  I have included just enough of the math here so that you can see 

what is happening.   

 

First, we must compute the value of Lr  required to resonate the antenna capacitance at the 

desired frequency.  Note that Lr , Rr  and Ca  from a series R-L-C network.  At the undamped 

natural frequency, the impedance of a series R-L-C network is real and equal to the value of the 

series resistance.  The undamped natural frequency is given by Equation (16) above.  We know 

the frequency at which we want to match, and we know the antenna capacitance.  We can then 

compute the inductance Lr  that we must use to resonate the antenna capacitance at our operating 

frequency. 

 

 
( )

L
C MHz pf

Hr
T a

= =
⋅ ⋅

=
1 1

2 5 26
38972 2ω π

µ.  (36) 

 

Note again that this is not the inductance we need to match the antenna to our transmitter.  This 

is the inductance we need to resonate the antenna capacitance to make the antenna impedance 

real.  If we simply place about 39µH in series with the antenna at the feed point, at 5MHz the 

impedance seen looking into the antenna with this series inductance will be simply the antenna 

radiation resistance, or about one ohm (ignoring the losses in the  39µH inductor).   

 

Now we need to match this one-ohm resistance to the 50-ohm transmitter impedance.  The 

equivalent circuit of the matching network with the antenna capacitance resonated is shown in 

Figure 4.  The impedance Zin  seen looking into the network may be written by inspection (yes it 

really can). 

 

 ( )Z
j C

L Rin
T m

m a= +
1

ω
/ /  (the notation “//” means in parallel with) 



 21

 

 ( )=
+

− +

R j L
L C j C

a T m

T m m T m

ω
ω ω1 2

 (37) 

 

If the network impedance is real at some frequency, which is what we are trying to achieve, then 

the imaginary part of Equation (37) must be zero at that frequency.  Solving for the imaginary 

part and setting it equal to zero, we can solve for the matching inductance Lm  and the 

compensating capacitance Cm . 
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 (38) 
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We can also solve for the Q  of the matching  network by substituting the values for Lm  and Cm  

from Equations (38) and (39) into the expression for Q .  Let this Q  for the matching network 

value be Qm . 

 

 Q
R

L
C R

R R R
Rm

r

m

m r
n r

in

r
= = =

1 1
1  (40) 

 

Note in Equations (38) and (39) that the matching inductance and matching capacitance are 

functions only of the antenna radiation resistance, the desired input resistance to the 

compensated network and the operating frequency.  This operating frequency is not the 

undamped natural frequency.  Also, note from Equation (40) that the value of Qm  is simply the 

square root of the ratio of the source resistance to the antenna resistance.  The physical 

significance of Qm  is that it is square of the resistive matching ratio of the source resistance to 

the load resistance.  For our 50-ohm source matched to the 1-ohm antenna resistance, Qm  is 7.07. 
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Computing the values of matching inductance and matching capacitance, 
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So, theoretically, if we place a 39.193µH inductor (38.97µH +0.223µH) in series with the 

antenna at the feed point and then place a 4,456pf capacitor in shunt, at the 5MHz transmitter 

frequency we should see a 50-ohm resistance looking into the compensated antenna.  I simulated 

this using Electronics Workbench and the results are shown in Figure 5.  As expected, at 5MHz 

the magnitude of the input impedance is almost exactly 50 ohms and the phase angle is almost 

exactly zero so the impedance is real.  The antenna is indeed almost perfectly matched to the 50-

ohm transmitter at 5MHz. 

 

Another interesting parameter of an antenna is the current in the antenna, Ia , and the voltage 

developed at the antenna feed point, Va .  The source voltage applied to the input to the matching 

network is simply the transmitter output voltage, Vs .  The antenna current may be simply written 

by inspection of Figure 4 as the source voltage divided by the impedance seen looking into the 

matching inductance.  The voltage appearing at the antenna feed point, that is across the series 

combination of the antenna resistance and the antenna capacitance, may be written by inspection 

of Figure 4 using several approaches.  First we will compute the antenna current.  At the 
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operating frequency, the resonating inductance Lr  exactly resonates with the antenna 

capacitance Ca .  Therefore, the impedance seen by the source looking into the matching 

inductance Lm  is simply the matching inductance in series with the antenna resistance.  The 

current driven into this branch of the circuit, which is conveniently the antenna current, is simply 

the source voltage applied at the input to the matching network divided by the sum of the 

antenna resistance and the reactance of the matching-inductance. 
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We will come back to Equation (45) a little later.   

 

One straight-forward means to compute the antenna voltage is to recognize that the matching 

inductance, the resonating inductance, the antenna resistance and the antenna capacitance form a 

simple voltage divider.  The voltage developed across the antenna at the antenna feed point may 

then be simply computed by the voltage division between the matching and resonating 

inductances and the antenna impedance (antenna resistance plus antenna capacitance). 
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At the operating frequency ω T  the antenna capacitance is exactly resonant with the resonating 

inductor.  Therefore, 
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Substituting this value for ω T  into Equation (46) and simplifying, 
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We of course immediately recognize that the term R C
La

a

r
 is the reciprocal of a Q  term.  

This term is the Q of the resonant network comprising the resonating inductor, the antenna 

resistance and the antenna capacitance.  Let this Q  term be defined as Qr . 
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Substituting this value of Qr  into Equation (47) and simplifying, 
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The negative sign in Equation (49) simply shows that the antenna voltage will be almost 180° 

out of phase with respect to the source voltage if the value of Qr  is high enough.  In fact, if Qr  

is relatively high and the ratio of Lm  to Lr  relatively low, the magnitude of the antenna voltage 

will be approximately equal to the source voltage multiplied by the ratio of Lr  divided by Lm . 

 

 V L
L
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r

m
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  for Qr >>1 and L
L

m

r
<<1 

 

The physical meaning of Equations (50) and (51) is that these give the voltage multiplication 

factor from the input to the matching network to the voltage at the antenna feed point (the 

“Tesla-Coil” effect).  For example, consider that we wish to radiate 100W at 5mhz from our 

antenna.  The transmitter source voltage at the input to the matching network will be 70.7V 

rms(100W into 50 ohms).  Then applying Equation (50), the voltage that would appear at the 

antenna feed point would be approximately 12.2kV rms (173 times the transmitter voltage).  If 

we use the approximate expression of Equation (51) we get 12.4kV which is a very good 

approximation.  This voltage multiplication is why one must use high-voltage components and 

good high-voltage construction techniques in antenna-matching networks even where only 

modest powers are to be radiated.  In a “real” antenna system, the total antenna resistance will be 

much higher than one ohm, in other words the Q  values will be much lower, ( Q  values of about 

100 to perhaps 200 are about the best that we can expect without very elegant techniques), so the 

voltage multiplication will be substantially lower.  By the way, this voltage-multiplication 

property of a series-resonant second-order network is a great science project. 

 

So, the antenna voltage is very much higher than the transmitter voltage.  Then what about the 

antenna current?  If we substitute the value for ω T  into Equation (45) and simplify, the 

magnitude of the antenna current is then given by Equation (52). 
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The transmitter current it simply the transmitter voltage divided by 50 ohms since the matched 

impedance is 50 ohms, or about 1.4A rms for a 100W power level (1.4A2 x 50 ohms = 100W).  

From Equation (52), we find that the magnitude of the antenna current is 10A rms, or about 7 

times the transmitter current.  And indeed, this 10A antenna current flowing through the 1-ohm 

antenna resistance results in a 100W radiated power.  Convenient how that works.  But where 

did all this current come from if the transmitter current is only 1.4A?  Well, it is provided by the 

matching capacitance Cm .  This capacitance stores energy and delivers it into the network at just 

the right time, that is with just the right phase, to provide the added current required in the 

antenna to radiate the desired power.  So, the antenna matching network provides both a voltage 

multiplication and a current multiplication for the specific antenna case examined here. 

 

It is useful to note in this antenna example that a Qm  of only about 7 is required to match the 

resistive part of the load to the source impedance, but a Qr  of greater than 1,700 is needed to 

achieve the necessary voltage multiplication.  This antenna will be very difficult to keep in tune 

for minimum VSWR and maximum radiated power due to this high value of Qr .  This is one of 

the disadvantages of an antenna that is very short compared to a quarter wavelength. 

 

One final useful application of Q  is related to bandwidth of a tuned circuit.  Generally, we 

compute the bandwidth as the center frequency divided by the Q .  But, just where does this 
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come from?  And is it a valid use of the parameter Q , or is it just one of those concepts that has 

just sort of come into being?  As I will show below, this is a valid use of Q  provided we are 

talking about a simple second-order tuned circuit. 

 

Bandwidth is defined as the frequency difference between the upper half-power frequency and 

the lower half-power frequency, also called the half-power points.  A half-power frequency is 

simply a frequency at which the power delivered to a load is one half the power delivered at the 

frequency of maximum power delivery.  Since a reduction in power by a factor of two is a power 

change of -3dB, the upper and lower half-power frequencies are also called the upper and lower   

-3dB frequencies, or simply the 3dB points, and the bandwidth the 3dB bandwidth. 

 

Figure 6 shows a simple parallel R-L-C tuned circuit driven by a current source.  Here the math 

is simplifier if we use a current source excitation.  The resistance in this resonant network is the 

load.  This network meets the requirements of a simple driven harmonic oscillator, so the 

parameter Q  may be properly applied to this network.  Since this is a parallel resonant circuit, 

its Qp  is given by Equation (24) above.   

 

When this network is excited at its undamped natural frequency, its impedance is real and equal 

to the load resistance.  Therefore, at this frequency, if the peak value of the exciting current 

source is I0 , the power delivered to the load is given by Equation (53). 
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For this network, the undamped natural frequency is the frequency at which the highest power is 

delivered to the load resistance.  Now we must compute the upper and lower half-power 

frequencies.  Since power dissipated in the resistor is proportional to the square of the voltage 

across the resistor, when the voltage is reduced by 2 , the power is reduced by 2, or to one half 

the power.  Then, at the half-power frequency, the voltage developed across the load resistance is 

equal to the voltage developed at the point of maximum power divided by 2 .  This voltage 
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reduction by 2  will occur when the magnitude of the impedance of the network is reduced by 

2  below its value at the undamped natural frequency.  Since this is a parallel network, it is 

more convenient to work with admittances of the elements.  The admittance of the network may 

be written by inspection. 
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Indeed, when ω ωT = 0 , Equation (54) reduces to 1
RL

 — remember Equation (54) is the 

admittance of the network which is one over the impedance.  So, at the half-power frequencies, 

the magnitude of the admittance is 2
RL

.  Since the magnitude of the admittance involves 

some squares and square roots, it is a little more convenient to use the square of the admittance.  

So, at the half-power frequencies, 
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The magnitude of the admittance is simply the square root of the sum of the squares of the real 

part and the imaginary part of Equation (54), and the magnitude squared is simply the square of 

that square root.  This is why using the squares is a bit more convenient — eliminates having to 

carry a bunch of square-roots around.  Then,  
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Now Equation (55) has four roots (four values of ωT  that satisfy the equation):  two at negative 

frequency and two at positive frequency.  The two positive-frequency roots are the ones we need 

since the negative roots do not have physical meaning to our problem here.  Applying the 

quadratic equation, combining terms and substituting 1
0

2
LC ≡ ω , 
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The magnitude of the second term in the numerator is always larger than L , so the two positive 

roots are the positive second term plus and minus the first term. 
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Now the bandwidth is defined simply as the upper half-power frequency minus the lower half-

power frequency.  The notation BWa  is used to denote that the bandwidth is in terms of angular 
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frequency (radians).  Since ω π= 2 f , the bandwidth BWf  in terms of frequency f  is simply 

BWa
2π . 
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This result in Equation (59) is useful since it gives us the angular bandwidth (radians/second) in 

terms of the network resistance and capacitance.  But, what we are trying to find is bandwidth as 

a function of Q .  We are getting close.  If we go back to Equation (16), solve for C  and 

substitute in Equation (59), and fiddle with the terms a little we get, 
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And if we look back at Equation (25), we see that the denominator term in brackets is Qp  for a 

parallel R-L-C network (convenient how that too works out isn’t it?).  Then, 
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If we divide both sides of Equation (61) by 2π , the left side of the equation will become BWf  

and the right side f
Q

0 . 
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And, 

 

 Q
f

BWf
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So, there we have it.  The half-power bandwidth is indeed given by the undamped natural 

frequency divided by Q .  Conversely, Q  is given by the undamped natural frequency divided by 

the bandwidth.  This also holds for a series R-L-C network (the proof of this is left as an exercise 

to the reader!). 

 

Suppose that we have a double-tuned IF stage.  This stage provides a very nice response with 

very well-defined half-power points.  So, it seems that we should be able to compute the “ Q  

value” of this stage by simply dividing the center frequency by the bandwidth.  Well, no you 

cannot really do that.  Recall that the fundamental definition of Q  is only for a simple, second-

order harmonic oscillator.  The double-tuned IF is not second-order.  It is some higher order 

since each tuned circuit is second order, and they are coupled as well.  Q  is not defined for this 

type of circuit.  However, since it is well known that Q  for a simple second-order network is 

given by the center frequency over the bandwidth, it is a simple jump to set aside the 

fundamental definition of Q  and use this center-frequency/bandwidth ratio to compute Q  values 
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for virtually any type of circuit that provides a response that looks like a tuned-circuit response.  

This is an improper use of the Q  parameter.  We sort of know what Q  means in this case, but if 

you try to compute circuit parameters using such a Q  value, the results will not be at all as 

expected.  For example, if you are designing a double-tuned 10.7MHz IF stage with a 300kHz 

bandwidth, you may compute the required “ Q ” of network as 35.7.  But if you try to compute 

the circuit component values of the double-tuned network from this Q  value using the results 

derived above, the response will not be as expected since the equations derived above do not 

apply in this case of a double-tuned network. 

 

We could go on almost indefinitely looking at various applications of this parameter Q , both 

proper and improper.  But I believe that the basics have been covered reasonably well above.  So 

summarizing very briefly, we have seen that Q  is a true network parameter totally defined by 

the component values of the network, and specifically it is not related to the actual frequency at 

which we are operating the network.  The Q  parameter applies only to simple second-order 

networks.  It applies to both series and parallel networks, but the value of Q  in terms of the 

network component values are different for the series and parallel case.  And finally, we find Q  

used in many ways in the art, some proper and some improper, and we must be cautious when 

using this parameter to be sure we use it appropriately, and we must be careful that we are sure 

we understand what is intended when we see it used.  If you always keep in mind Equation (24), 

Q R C
Lp = , and Equation (32), Q

R
L

Cs =
1 , it should help eliminate confusion.   


